Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T19:22:05.285Z Has data issue: false hasContentIssue false

Fabrication of Ag/Bi2Sr2Ca1Cu2Ox superconducting tapes by the oxidation and postoxidation (partial melt) annealing of malleable, metal-bearing precursors

Published online by Cambridge University Press:  31 January 2011

Terry J. Detrie
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Kenneth H. Sandhage
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Get access

Abstract

A solid metal-bearing precursor route has been used to fabricate Ag-sheathed Bi2Sr2Ca1Cu2Ox (2212) superconducting tapes. Intimately mixed Bi2O3–Sr–Ca–Cu-bearing powder was first synthesized by a two-stage, high-energy/low-energy mechanical alloying process. The powder was then packed into silver tubes and formed into tapes by drawing and biaxial (Turk's-head) rolling. The precursor tapes were oxidized and converted into Ag-sheathed 2212 by heat treatment at 350–860 °C in oxygen. Subsequent annealing at 897 °C, followed by slow cooling and subsolidus annealing at 850 °C, yielded 2212 grains with enhanced c-axis alignment. The resulting tapes exhibited average and maximum transport Jc (4.2 K, self-field) values of 3.2 × 104 and 6.8 × 104 A/cm2, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Heine, K., Tenbrink, J., and Thoner, M., Appl. Phys. Lett. 55, 2441 (1989).CrossRefGoogle Scholar
2.Tenbrink, J., Heine, K., and Krauth, H., Cryogenics 30, 422 (1990).CrossRefGoogle Scholar
3.Enomoto, N., Kikuchi, H., Uno, N., Kumakura, H., Togano, K., and Watanabe, K., Jpn. J. Appl. Phys. 29, L447 (1990).CrossRefGoogle Scholar
4.Asano, T., Tanaka, Y., Fukutomi, M., and Maeda, H., Jpn. J. Appl. Phys. 29, L1066 (1990).CrossRefGoogle Scholar
5.Kase, J., Togano, K., Kumakura, H., Dietderich, D.R., Irisawa, N., Morimoto, T., and Maeda, H., Jpn. J. Appl. Phys. 29, L1096 (1990).CrossRefGoogle Scholar
6.Sandhage, K.H., Riley, G.N. Jr, and Carter, W.L., J. Metals 43(3), 21 (1991).Google Scholar
7.Riley, G.N. Jr, and Carter, W.L., Bull. Am. Ceram. Soc. 72(7), 91 (1993).Google Scholar
8.Haugan, T., Patel, S., Pitsakis, M., Wong, F., Chen, S.J., and Shaw, D.T., J. Electron. Mater. 24, 1811 (1995).CrossRefGoogle Scholar
9.Hellstrom, E.E., in High-Temperature Superconducting Materials Science and Engineering, edited by Shi, D. (Pergamon Press, New York, 1995), p. 383.CrossRefGoogle Scholar
10.Balachandran, U., Jammy, R., Chudzik, M., Iyer, A.N., and Haldar, P., J. Metals 48(10), 19 (1996).Google Scholar
11.Selvamanickam, V., Hazelton, D.W., Motowidlo, L., Krahula, F., Hoehn, J. Jr, Walker, M.S., and Haldar, P., J. Metals 50(10), 27 (1998).Google Scholar
12.Dietderich, D.R., Ullmann, B., Freyhardt, H.C., Kase, J., Kumakura, H., Togano, K., and Maeda, H., Jpn. J. Appl. Phys. 29, L1100 (1990).CrossRefGoogle Scholar
13.Ray, R.D. II and Hellstrom, E.E., Appl. Phys. Lett. 57, 2948 (1990).CrossRefGoogle Scholar
14.Endo, A. and Nishikida, S., IEEE Trans. Appl. Supercond. 3, 931 (1993).CrossRefGoogle Scholar
15.Ray, R.D. II and Hellstrom, E.E., Physica C 251, 27 (1995).CrossRefGoogle Scholar
16.Okada, M., Tanaka, K., Sato, J., Awaji, S., and Watanabe, K., Jpn. J. Appl. Phys. 34, 4770 (1995).CrossRefGoogle Scholar
17.Polak, M., Zhang, W., Polyanskii, A., Pashitski, A., Hellstrom, E.E., and Larbalestier, D.C., IEEE Trans. Appl. Supercond. 7, 1537 (1997).CrossRefGoogle Scholar
18.Sandhage, K.H., Masur, L.J., Smith, G.D., Poole, J.M., and McKimpson, M.G., in Proceedings of the Symposium High Temperature Superconducting Compounds III: Processing and Microstructure-Property Relationships, edited by Whang, S.H., DasGupta, A., and Collings, E. (TMS, Warrendale, PA, 1991), p. 347.Google Scholar
19.Otto, A., Craven, C., Daly, D., Podtburg, E.R., Schreiber, J., and Masur, L.J., J. Metals 45(9), 48 (1993).Google Scholar
20.Otto, A., Masur, L.J., Gannon, J., Podtburg, E., Daly, D., Yurek, G.J., and Malozemoff, A.P., IEEE Trans. Appl. Supercond. 3, 915 (1993).CrossRefGoogle Scholar
21.Masur, L.J., Podtburg, E.R., Craven, C.A., Otto, A., Wang, Z.L., and Kroeger, D.M., Physica C 230, 274 (1994).CrossRefGoogle Scholar
22.Otto, A., Masur, L.J., Craven, C., Daly, D., Podtburg, E.R., and Schreiber, J., IEEE Trans. Appl. Supercond. 5, 1154 (1995).CrossRefGoogle Scholar
23.Citak, R., Rogers, K.A., and Sandhage, K.H., J. Am. Ceram. Soc. 82, 237 (1999).CrossRefGoogle Scholar
24.Ward, G.A. and Sandhage, K.H., J.Am. Ceram. Soc. 80, 1508 (1997).CrossRefGoogle Scholar
25.Detrie, T.J. and Sandhage, K.H., in Impact of Recent Advances in the Synthesis and Processing of Ceramic Superconductors, Ceramic Transactions Vol. 84, edited by Wong-Ng, W., Ballachandran, U., and Bhalla, A.S.. (The American Ceramic Society, Westerville, OH, 1998), p. 93.Google Scholar
26.Sandhage, K.H., Allameh, S.M., Kumar, P., Schmutzler, H.J., Viers, D., and Zhang, X-D., Mater. Manuf. Proc. (in press).Google Scholar
27.Allameh, S.M. and Sandhage, K.H., J. Mater. Res. 14, 4319 (1999).CrossRefGoogle Scholar
28.Sandhage, K.H., in Innovative Processing and Synthesis of Ceramics, Glasses, and Composites, Ceramic Transactions Vol. 85, edited by Bansal, N.P., Logan, K.V., and Singh, J.P. (The American Ceramic Society, Westerville, OH, 1997), p. 103.Google Scholar
29.Detrie, T.J. and Sandhage, K.H. (unpublished).Google Scholar
30.Zhang, W., Pupysheva, O.V., Ma, Y., Polak, M., Hellstrom, E.E., and Larbalestier, D.C., IEEE Trans. Appl. Supercond. 7, 1544 (1997).CrossRefGoogle Scholar
31.Polonka, J., Xu, M., Li, Q., Goldman, A.I., and Finnemore, D.K., Appl. Phys. Lett. 59, 3640 (1991).CrossRefGoogle Scholar
32.Matheis, D.P., Misture, S.T., and Snyder, R.L., Physica C 217, 319 (1993).CrossRefGoogle Scholar
33.MacManus-Driscoll, J.L., Bravman, J.C., Savoy, R.J., Gorman, G., and Beyers, R.B., J. Am. Ceram. Soc. 77, 2305 (1994).CrossRefGoogle Scholar
34. JCPDS Card File: No. 41–1449 for ct–Bi2O3; No. 27–50 for β–Bi2O3; No. 5–519 for Bi; No. 15–305 for α–Sr; No. 23–430 for ct–Ca; No. 15–305 and No. 23–430 and the use of Vegard's law for Sr0.85Ca0.15; No. 4–836 for Cu; No. 4–783 for Ag; No. 31–199 for BiSr2; No. 25–1136 for Cu5Ca; No. 41–1273 forCuCa; No. 22–524 for CuCa2; No. 37–1497 for CaO; No. 6–520 for SrO; No. 5–418 for SrCO3; No. 41–1475 for CaCO3; No. 5–667 for Cu2O; No. 45–937 for CuO; No. 43–25 for Sr14Cu24O41.Google Scholar
35.Rawn, C.J., M.S. Thesis, George Mason University (December 1991).Google Scholar
36.Chmielewski, D.H. and Sandhage, K.H., J. Am. Ceram. Soc. 78, 2504 (1995).CrossRefGoogle Scholar
37.Li, Y.H. and MacManus-Driscoll, J.L., Physica C 267, 337 (1996).CrossRefGoogle Scholar
38.Gannon, J.J. Jr, and Sandhage, K. H., IEEE Trans. Appl. Supercond. 7, 1533 (1997).CrossRefGoogle Scholar
39.MacManus-Driscoll, J.L., Li, Y.H., and Yi, Z., J. Am. Ceram. Soc. 80, 807 (1997).CrossRefGoogle Scholar
40.Matheis, D.P. and Snyder, R.L., Powder Diffr. 5(1), 8 (1990).CrossRefGoogle Scholar
41.Roth, R.S., Rawn, C.J., Ritter, J.J., and Burton, B.P., J. Am. Ceram. Soc. 72, 1545 (1989).CrossRefGoogle Scholar
42.Metals Handbook, 10th ed. (ASM International, Materials Park, OH, 1990), Vol. 2, pp. 1105, 1110, 1159.Google Scholar
43.Schmutzler, H.J. and Sandhage, K.H., Ceram. Eng. Sci. Proc. 15(4), 95 (1994).CrossRefGoogle Scholar
44.Chakrabarti, D.J. and Laughlin, D.E., Bull. Alloy Phase Diagr. 5, 570 (1984).CrossRefGoogle Scholar
45.Chakrabarti, D.J. and Laughlin, D.E., Bull. Alloy Phase Diagr. 5, 391 (1984).CrossRefGoogle Scholar
46.Bruzzone, G., J. Less-Common Met. 25, 361 (1971).CrossRefGoogle Scholar
47.Alcock, C.B. and Itkin, V.P., Bull. Alloy Phase Diagr. 7, 455 (1986).CrossRefGoogle Scholar
48.Cullity, B.D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978), p. 520.Google Scholar
49.Barin, I., Thermochemical Data of Pure Substances (VCH Weinheim, Germany, 1989), pp. 203, 304, 1427.Google Scholar
50.Wang, W.G., Horvat, J., Liu, H.K., and Dou, S.X., Supercond. Sci. Tech. 9, 875 (1996).CrossRefGoogle Scholar
51.Alexander, W.A., Calvert, L.D., Desaulniers, A., Dunsmore, H.S., and Sargent, D.F., Can. J. Chem. 47, 611 (1969).CrossRefGoogle Scholar
52.Moffatt, W.G., The Handbook of Binary Phase Diagrams (Genium, Schenectady, NY, 1976), Vol. 1.Google Scholar
53.Antony, M.M. and Sandhage, K.H., J. Mater. Res. 8(11), 2968 (1993).CrossRefGoogle Scholar
54.Smithells Metals Reference Book, 6th ed., edited by Brandes, E.A. (Butterworths, London, United Kingdom, 1983), p. 14–7.Google Scholar
55.Zhang, W. and Hellstrom, E.E., Physica C 234, 137 (1994).CrossRefGoogle Scholar
56.Lo, W. and Glowacki, B.A., Physica C 193, 253 (1992).CrossRefGoogle Scholar
57.Paz-Pujalt, G.R., Physica C 166, 177 (1990).CrossRefGoogle Scholar
58.Baker, A.P. and Glowacki, B.A., Physica C 223, 383 (1994).CrossRefGoogle Scholar
59.Rubin, L.M., Orlando, T.P., Vander Sande, J.B., Gorman, G., Savoy, R., Swope, R., and Beyers, R., Appl. Phys. Lett. 61, 1977 (1992).CrossRefGoogle Scholar
60.Triscone, G., Genoud, J-Y., Graf, T., Junod, A., and Muller, J., Physica C 176, 247 (1991).CrossRefGoogle Scholar
61.Yoshida, M. and Endo, A., Jpn. J. Appl. Phys. 32, L1509 (1993).CrossRefGoogle Scholar
62.Zhang, W., Ray, R.D. II, and Hellstrom, E.E., Advances in Cryogenic Engineering, edited by Reed, R.P. (Plenum Press, New York, 1994), Vol. 40, p. 209.Google Scholar
63.Zhang, W. and Hellstrom, E.E., Supercond. Sci. Technol. 8, 430 (1995).CrossRefGoogle Scholar
64.Motowidlo, L.R., Galinski, G., Ozeryansky, G., Zhang, W., and Hellstrom, E.E., Appl. Phys. Lett. 65, 2731 (1994).CrossRefGoogle Scholar
65.Hellstrom, E.E. and Zhang, W., Supercond. Sci. Technol. 8, 317 (1995).CrossRefGoogle Scholar