Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T01:30:19.409Z Has data issue: false hasContentIssue false

Fabrication of anti-icing surface with halloysite spherical microcapsule

Published online by Cambridge University Press:  13 October 2020

HongYan Li*
Affiliation:
School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin300384, P. R. China
Qi Li
Affiliation:
School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin300384, P. R. China
HongLi Liu*
Affiliation:
School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin300384, P. R. China
Kai Cao
Affiliation:
School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin300384, P. R. China
PengYu Zhang
Affiliation:
Tianjin Building Materials Academy, Tianjin300381, P. R. China
Tong Liu
Affiliation:
Tianjin Building Materials Academy, Tianjin300381, P. R. China
DongMei Wang
Affiliation:
Tianjin Building Materials Academy, Tianjin300381, P. R. China
XiaoLan Liao
Affiliation:
School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin300384, P. R. China
DongQing Wei
Affiliation:
School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin300384, P. R. China
*
a)Address all correspondence to these authors. e-mail: liu.honglitcu@foxmail.com
Get access

Abstract

The construction of halloysite spherical capsules (halloysite aerogels) was reported for the first time in our previous work. The excellent performance of the microcapsule in functional carrying was also found in our further research. In this work, the anti-icing surface was fabricated by using halloysite nanotubes and halloysite spherical microcapsules. The fabrication of the anti-icing coating was investigated, and the ice nucleation behavior of droplet on the coating surface was studied. The modified halloysite nanotubes (F-HNTs) and the modified halloysite microcapsules (F-HAs) were characterized by Fourier-transform infrared spectroscopy, thermal gravimetric, and pore size distribution. The results show that the introduction of F-HNTs and F-HAs have successfully formed a micro-nano structure on the coating surface with superhydrophobicity performance. The icing temperature of the coating has decreased 2.3 °C compared with bare glass, and the ice adhesion strength has decreased 82%. According to the ice dynamic mechanics, the ice nucleation rate on the coating is significantly reduced, thus the halloysite microcapsule coating has good icephobic performance.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kreder, M.J., Alvarenga, J., Kim, P., and Aizenberg, J.: Design of anti-icing surfaces: Smooth, textured or slippery. Nat. Rev. Mater. 1, 15003 (2016).CrossRefGoogle Scholar
Bocquet, L. and Lauga, E.: A smooth future. Nat. Mater. 10, 334337 (2011).CrossRefGoogle ScholarPubMed
Guyer, E.P., Gantz, J., and Dauskardt, R.H.: Aqueous solution diffusion in hydrophobic nanoporous thin-film glasses. J. Mater. Res. 22, 710718 (2007).CrossRefGoogle Scholar
Wang, J.J. and Wang, L.M.: Superhydrophilic and underwater superoleophobic nanofibrous membrane for separation of oil/water emulsions. J. Mater. Res. 35, 15041513 (2020).CrossRefGoogle Scholar
Tourkine, P., Le Merrer, M., and Quere, D.: Delayed freezing on water repellent materials. Langmuir 25, 72147216 (2009).CrossRefGoogle ScholarPubMed
Cao, L.L., Jones, A.K., Sikka, V.K., Wu, J.Z., and Gao, D.: Anti-icing superhydrophobic coatings. Langmuir 25, 1244412448 (2009).CrossRefGoogle ScholarPubMed
Hejazi, V., Sobolev, K., and Nosonovsky, M.: From super-hydrophobicity to icephobicity: Forces and interaction analysis. Sci. Rep. 3, 2194 (2013).CrossRefGoogle Scholar
Meuler, A.J., McKinley, G.H., and Cohen, R.E.: Exploiting topographical texture to impart icephobicity. ACS Nano 4, 70487052 (2010).CrossRefGoogle ScholarPubMed
Wong, T.S., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B.D., Grinthal, A., and Aizenberg, J.: Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443447 (2011).CrossRefGoogle ScholarPubMed
Ikeda-Fukazawa, T. and Kawamura, K.: Molecular dynamics studies of surface of ice Ih. J. Chem. Phys. 120, 13951401 (2004).CrossRefGoogle ScholarPubMed
Smith, J.D., Dhiman, R., Anand, S., Reza-Garduno, E., Cohen, R.E., McKinley, G.H., and Varanasi, K.K.: Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9, 17721780 (2013).CrossRefGoogle Scholar
Chen, J., Dou, R.M., Cui, D.P., Zhang, Q.L., Zhang, Y.F., Xu, F.J., Zhou, X., Wang, J.J., Song, Y.L., and Jiang, L.: Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate. ACS Appl. Mater. Interfaces 5, 40264030 (2013).CrossRefGoogle ScholarPubMed
Xiao, R., Miljkovic, N., Enright, R., and Wang, E.N.: Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer. Sci. Rep. 3, 1988 (2013).CrossRefGoogle ScholarPubMed
Mousavand, T., Ohara, S., Naka, T., Umetsu, M., and Takami, S.: Organic-ligand-assisted hydrothermal synthesis of ultrafine and hydrophobic ZnO nanoparticles. J. Mater. Res. 25, 219223 (2010).CrossRefGoogle Scholar
Binks, B.P. and Horozov, T.S.: Aqueous foams stabilized solely by silica nanoparticles. Angew. Chem. 117, 37883791 (2005).CrossRefGoogle Scholar
Karunakaran, R.G., Lu, C.H., Zhang, Z.H., and Yang, S.: Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (<=100 nm). Langmuir 27, 45944602 (2011).CrossRefGoogle Scholar
Chen, Z.J., Guo, Y.B., and Fang, S.M.: A facial approach to fabricate superhydrophobic aluminum surface. Surf. Interface Anal. 42, 16 (2012).Google Scholar
Tanaka, S., Shirochi, T., Nishizawa, H., Metoki, K., Miura, H., Hara, H., and Takahashi, T.: Micro-blasting effect on fracture resistance of PVD-AlTiN coated cemented carbide cutting tools. Surf. Coat. Technol. 308, 337340 (2016).CrossRefGoogle Scholar
Zhao, N., Weng, L.H., Zhang, X.Y., Xie, Q.D., Zhang, X.L., and Xu, J.: A lotus-leaf-like superhydrophobic surface prepared by solvent-induced crystallization. Chem. Phys. Chem. 7, 824827 (2010).CrossRefGoogle Scholar
Tuteja, A., Choi, W., Ma, M.L., Mabry, J.M., Mazzella, S.A., Rutledge, G.C., Mckinley, G.H., and Cohen, R.E.: Designing superoleophobic surfaces. Science 318, 16181622 (2007).CrossRefGoogle ScholarPubMed
De, S., Patel, A. and Lutkenhaus, J.L.: Layer-by-layer assembly of polymers and anisotropic nanomaterials using spray-based approach. J. Mater. Res. 35, 11631172 (2020).CrossRefGoogle Scholar
Ahmed, H.T., Joseph, G.L., Andrew, D.J., and Sarit, B.B.: Effect of electrospinning parameters on the characterization of PLA/HNT nanocomposite fibers. J. Mater. Res. 25, 857865 (2010).Google Scholar
Kong, W.N., Wang, W.C., Gao, J.P., Liu, T.L., and Liu, Y.: Oxidized starch films reinforced with natural halloysite. J. Mater. Res. 26, 29382944 (2011).Google Scholar
Ma, W., Wu, H., Higaki, Y., and Takahara, A.: Halloysite nanotubes: Green nanomaterial for functional organic-inorganic nanohybrids. Chem. Rec. 18, 986999 (2018).CrossRefGoogle ScholarPubMed
Yuan, P., Southon, P.D., Liu, Z.W., Green, M.E.R., Hook, J.M., Antill, S.J., and Kepert, C.J.: Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane. J. Phys. Chem. C 112, 1574215751 (2008).CrossRefGoogle Scholar
Yah, W.O., Takahara, A., and Lvov, Y.M.: Selective modification of halloysite lumen with octadecylphosphonic acid: New inorganic tubular micelle. J. Am. Chem. Soc. 134, 18531859 (2012).CrossRefGoogle ScholarPubMed
Wu, H., Watanabe, H., Ma, W., Fujimoto, A., Higuchi, T., Uesugi, K., Takeuchi, A., Suzuki, Y., Jinnai, H., and Takahara, A.: Robust liquid marbles stabilized with surface-modified halloysite nanotubes. Langmuir 29, 1497114975 (2013).CrossRefGoogle ScholarPubMed
Li, H.Y., Li, R.Y., Liu, H.L., Bai, X.Q., Wang, D.M., Zhang, P.Y., Zhang, B.L., Wei, D.Q., and Liao, X.L.: Load transfer behavior of 3D aerogels fabricated with halloysite nanotubes. Macromol. Mater. Eng., 304, 1900432 (2019).CrossRefGoogle Scholar
Chandrasekaran, S., Campbell, P.G., Baumann, T.F., and Worsley, M.A.: Carbon aerogel evolution: Allotrope, graphene-inspired, and 3D-printed aerogels. J. Mater. Res. 32, 41664185 (2017).CrossRefGoogle Scholar
Wu, G., Yin, P.P., Dai, R.Y., Wang, M., and Chen, H.Z.: Microcapsule-based materials for electrophoretic displays. J. Mater. Res. 27, 653662 (2012).CrossRefGoogle Scholar
Feng, K.Y., Hong, G.Y., Liu, J.S., Li, M.Q., Zhou, C.R., and Liu, M.X.: Fabrication of high performance superhydrophobic coatings by spray-coating of polysiloxane modified halloysite nanotubes. Chem. Eng. J. 331, 744754 (2018).CrossRefGoogle Scholar
Amoriello, S., Bianco, A., Eusebio, L., and Gronchi, P.: Evolution of two acid steps sol-gel phases by FTIR. J. Sol–Gel Sci. Technol. 58, 209217 (2011).CrossRefGoogle Scholar
Donners, M.A.H., Niemantsverdriet, J.W., and de With, G.: Adsorption of H2O, H2S, and N2 on MnZn ferrite. J. Mater. Res. 15, 27302736 (2000).CrossRefGoogle Scholar
Zeng, X.P., Sun, Z.H., Wang, H., Wang, Q., and Yang, Y.J.: Supramolecular gel composites reinforced by using halloysite nanotubes loading with in-situ formed Fe3O4 nanoparticles and used for dye adsorption. Compos. Sci. Technol. 122, 149154 (2016).CrossRefGoogle Scholar
Dorrer, C. and Ruehe, J.: Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 23, 38203824 (2007).CrossRefGoogle Scholar
Tan, N., Xing, Z.G., Wang, X.L., Wang, H.D., Jin, G., and Xu, B.S.: Effects of texturing patterns on the adhesion strength of atmosphere plasma sprayed coatings. J. Mater. Res. 32, 16821692 (2017).CrossRefGoogle Scholar
Bhardwaj, V., Chowdhury, R., and Jayaganthan, R.: Adhesion strength and nanomechanical characterization of ZnO thin films. J. Mater. Res. 32, 14321443 (2017).CrossRefGoogle Scholar
Gurganus, C.W., Charnawskas, J.C., Kostinski, A.B., and Shaw, R.A.: Nucleation at the contact line observed on nanotextured surfaces. Phys. Rev. Lett. 113, 235701 (2014).CrossRefGoogle ScholarPubMed
Fu, Q.T., Wu, X.H., Kumar, D., Ho, J.W.C., Kanhere, P.D., Srikanth, N., Liu, E.J., Wilson, P., and Chen, Z.: Development of sol–gel icephobic coatings: Effect of surface roughness and surface energy. ACS Appl. Mater. Interfaces 6, 2068520692 (2014).CrossRefGoogle ScholarPubMed
Fu, Q.T., Liu, E.J., Wilson, P., and Chen, Z.: Ice nucleation behaviour on sol–gel coatings with different surface energy and roughness. Phys. Chem. Chem. Phys. 17, 2149221500 (2015).CrossRefGoogle ScholarPubMed