Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T19:36:21.474Z Has data issue: false hasContentIssue false

Fabrication of carbon-nanotube-based sensor array and interference study

Published online by Cambridge University Press:  23 August 2011

Yijang Lu
Affiliation:
NASA Ames Research Center Moffett Field, California 94035
M. Meyyappan
Affiliation:
NASA Ames Research Center Moffett Field, California 94035
Jing Li*
Affiliation:
NASA Ames Research Center Moffett Field, California 94035
*
a)Address all correspondence to this author. e-mail: Jing.Li-1@nasa.gov
Get access

Abstract

An array of 32 sensor elements with single-walled carbon nanotubes (SWCNTs) as the sensing medium has been fabricated. The microfabrication approach used allows reduction of the chip size and increases the number of sensor elements in a chip and is amenable for large wafer scale-up. The sensor array chip is designed as an electronic nose for use with the aid of a pattern recognition algorithm. The sensor chips were tested for NO2 sensing and interfering effects from humidity and a background of chlorine. The results indicate that NO2 can be detected at low concentration levels of 0.5 ppm in the presence of chlorine at 30 times higher concentrations. The sensor response is affected by humidity, which implies that the training data set for NO2 detection needs to be generated for multiple humidity levels for interpolation purposes during field use.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Albert, K.J., Lewis, N.S., Schauer, C.L., Sotzing, G.A., Stitzel, S.E., Vaid, T.P., and Walt, D.R.: Cross-reactive chemical sensor arrays. Chem. Rev. 100, 2595 (2000).CrossRefGoogle ScholarPubMed
2.Stetter, J.R. and Li, J.: Amperometric gas sensors—A review. Chem. Rev. 108, 352 (2008).CrossRefGoogle ScholarPubMed
3.Rock, F., Barsan, N., and Weimar, U.: Electronic nose: Current status and future trends. Chem. Rev. 108, 705 (2008).CrossRefGoogle ScholarPubMed
4.Grundler, P.: Chemical sensors: An introduction for scientists and engineers, (Springer, 2007).Google Scholar
5.Li, J.: Carbon nanotube applications: Chemical and physical sensors, in Carbon Nanotubes: Science and Applications, edited by Meyyappan, M. (CRC Press, Boca Raton, FL, 2004), chapter 9.Google Scholar
6.Meyyappan, M. and Sunkara, M.: Inorganic Nanowires: Applications, Properties and Characterization (CRC Press, Boca Raton, FL, 2010), chapter 14.Google Scholar
7.Cinke, M., Li, J., Chen, B., Cassell, A., Delzeit, L., Han, J., and Meyyappan, M.: Pore structure of raw and purified HiPCo single-walled carbon nanotubes. Chem. Phys. Lett. 365, 69 (2002).CrossRefGoogle Scholar
8.Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., and Dai, H.: Nanotube molecular wires as sensors. Science 287, 662 (2000).CrossRefGoogle ScholarPubMed
9.Qi, P., Vermesh, O., Grecu, M., Javey, A., Wang, Q., Dai, H., Peng, S., and Cho, K.J.: Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett. 3, 347 (2003).CrossRefGoogle ScholarPubMed
10.Ng, H.T., Fang, A., Li, J., and Li, S.F.Y.: Flexible carbon nanotube membrane sensory system: A generic platform. J. Nanosci. Nanotechnol. 1, 375 (2001).CrossRefGoogle ScholarPubMed
11.Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., and Meyyappan, M.: Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 3, 929 (2003).CrossRefGoogle Scholar
12.Lu, Y., Li, J., Han, J., Ng, H-T., Binder, C., Partridge, C., and Meyyappan, M.: Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem. Phys. Lett. 391, 344 (2004).CrossRefGoogle Scholar
13.Li, J., Lu, Y., Ye, Q., Delzeit, L., and Meyyappan, M.: A gas sensor array using carbon nanotubes and microfabrication technology. Electrochem. Solid-State Lett. 8, H100 (2005).CrossRefGoogle Scholar
14.Lu, Y., Partridge, C., Meyyappan, M., and Li, J.: A carbon nanotube sensor array for sensitive gas discrimination using principal component analysis. J. Electroanal. Chem. 593, 105 (2006).CrossRefGoogle Scholar
15.Li, J., Lu, Y., and Meyyappan, M.: Nanochemical sensors with polymer-coated carbon nanotubes. IEEE Sens. J. 6, 1047 (2006).CrossRefGoogle Scholar
16.Bekyarova, E., Davis, M., Burch, T., Itkis, M.E., Zhao, B., Sunshine, S., and Haddon, R.C.: Chemically functionalized single-walled carbon nanotubes as ammonia sensors. J. Phys. Chem. B 108, 19717 (2004).CrossRefGoogle Scholar
17.Star, A., Joshi, V., Skarupo, S., Thomas, D., and Gabriel, J.P.: Gas sensor array based on metal-decorated carbon nanotubes. J. Phys. Chem. B 110, 21014 (2006).CrossRefGoogle ScholarPubMed
18.Chang, Y.W., Oh, J.S., Yoo, S.H., Choi, H.H., and Yoo, K.H.: Electrically refreshable carbon-nanotube-based gas sensors. Nanotechnology 18, 435504 (2007).CrossRefGoogle Scholar
19.Cho, T.S., Lee, K.J., Kong, J., and Chandrakasan, A.P.: A 32-μw 1.83-kS/s carbon nanotube chemical sensor system. IEEE J. Solid-State Circuits 44, 659 (2009).CrossRefGoogle Scholar
20.Novak, J.P., Snow, E.S., Houser, E.J., Park, D., Stepnowski, J.L., and McGill, R.A.: Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett. 83, 4026 (2003).CrossRefGoogle Scholar
21.Penza, M., Cassano, G., Rossi, R., Rizzo, A., Signore, M.A., Alvisi, M., Lisi, N., Serra, E., and Giorgi, R.: Effect of growth catalysts on gas sensitivity in carbon nanotube film based chemiresistive sensors. Appl. Phys. Lett. 90, 103101 (2007).CrossRefGoogle Scholar
22.Kauffman, D.R. and Star, A.: Carbon nanotube gas and vapor sensors. Angew. Chem. Int. Ed. 47, 6550 (2008).CrossRefGoogle ScholarPubMed
23.Ryan, M.A., Zhou, H., Buehler, M.G., Manatt, K.S., Mowrey, V.S., Jackson, S.P., Kisor, A.K., Shevade, A.V., and Homer, M.L.: Monitoring space shuttle air quality using the jet propulsion laboratory electronic nose. IEEE Sens. J. 4, 337 (2004).CrossRefGoogle ScholarPubMed
24.Lu, Y., Meyyappan, M., and Li, J.: A carbon-nanotube-based sensor array for formaldehyde detection. Nanotechnology 22, 055502 (2011).CrossRefGoogle ScholarPubMed