Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T16:36:45.805Z Has data issue: false hasContentIssue false

Fabrication of Ga2O3/SnO2 core–shell nanowires and their ethanol gas sensing properties

Published online by Cambridge University Press:  01 August 2011

Yun-Guk Jang
Affiliation:
Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 151-744, Republic of Korea
Won-Sik Kim
Affiliation:
Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 151-744, Republic of Korea
Dai-Hong Kim
Affiliation:
Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 151-744, Republic of Korea
Seong-Hyeon Hong*
Affiliation:
Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 151-744, Republic of Korea
*
a)Address all correspondence to this author. e-mail: shhong@snu.ac.kr
Get access

Abstract

Ga2O3/SnO2 core–shell nanowires were synthesized by combining thermal evaporation and atomic layer deposition (ALD), and nanowire network sensors were fabricated by directly depositing them on the substrate with interdigitated Pt electrodes. Crystalline Ga2O3 nanowires of ∼20 nm diameter were grown on Au-catalyzed substrate at 800 °C. ALD-grown SnO2 shell layer was composed of interconnected nanoparticles of <10 nm, and its thickness was varied depending on the number of ALD cycles. The core–shell nanowire sensors exhibited the highest ethanol gas response at 400 °C, which was ∼200 °C lower than that for Ga2O3 nanowire sensor. The 100 cycle SnO2-coated nanowire sensor whose shell thickness was close to the Debye length of SnO2 had higher ethanol gas response in all the temperatures investigated. In addition, the core–shell nanowire sensors showed an order of magnitude higher gas response toward ethanol against other gases, such as H2, CO, and NH3.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tippins, H.H.: Optical absorption and photoconductivity in the band edge of β-Ga2O3. Phys. Rev. 140, A316 (1965).Google Scholar
2.Ohta, H., Nomura, K., Hiramatsu, H., Ueda, K., Kamiya, T., Hirano, M., and Hosono, H.: Frontier of transparent oxide semiconductors. Solid-State Electron. 47, 2261 (2003).Google Scholar
3.Xie, H.B., Chen, L.M., Liu, Y.N., and Huang, K.L.: Preparation and photoluminescence properties of Eu-doped α- and β-Ga2O3. Solid State Commun. 141, 12 (2007).Google Scholar
4.Nakagawa, K., Kajita, C., Ide, Y., Okamura, M., Kato, S., Kasuya, H., Ikenaga, N., Kobayashi, T., and Suzuki, T.: Promoting effect of carbon dioxide on the dehydrogenation and aromatization of ethane over gallium-loaded catalysts. Catal. Lett. 64, 215 (2000).Google Scholar
5.Schwebel, T., Fleischer, M., and Meixner, H.: A selective, temperature compensated O2 sensor based on Ga2O3 thin films. Sens. Actuators, B 65, 176 (2000).Google Scholar
6.Ogita, M., Hiro, K., Nakanishi, Y., and Hatanaka, Y.: Ga2O3 thin film for oxygen sensor at high temperature. Appl. Surf. Sci. 175-176, 721 (2001).Google Scholar
7.Fleischer, M. and Meixner, H.: Sensing reducing gases at high temperatures using long-term stable Ga2O3 thin films. Sens. Actuators, B 6, 257 (1992).Google Scholar
8.Fleischer, M., Giber, J., and Meixner, H.: H2-induced changes in electrical conductance of β-Ga2O3 thin film system. Appl. Phys., A 54, 560 (1992).Google Scholar
9.Schwebel, T., Fleischer, M., Meixner, H., and Kohl, C.D.: CO-sensor for domestic use based on high temperature stable Ga2O3 thin films. Sens. Actuators, B 49, 46 (1998).Google Scholar
10.Kolmakov, A. and Moskovits, M.: Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Res. 34, 151 (2004).Google Scholar
11.Shen, G., Chen, P.C., Ryu, K., and Zhou, C.: Devices and chemical sensing applications of metal oxide nanowires. J. Mater. Chem. 19, 828 (2009).Google Scholar
12.Huang, X.J. and Choi, Y.K.: Chemical sensors based on nanostructured materials. Sens. Actuators, B 122, 659 (2007).Google Scholar
13.Wang, B., Zhu, L.F., Yang, Y.H., Xu, N.S., and Yang, G.W.: Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. J. Phys. Chem. C. 112, 6643 (2008).Google Scholar
14.Feng, P., Xue, X.Y., Liu, Y.G., Wan, Q., and Wang, T.H.: Achieving fast oxygen response in individual β-Ga2O3 nanowires by ultraviolet illumination. Appl. Phys. Lett. 89, 112114 (2006).Google Scholar
15.Liu, Z., Yamazaki, T., Shen, Y., Kikuta, T., Nakatani, N., and Li, Y.: O2 and CO sensing of Ga2O3 multiple nanowire gas sensors. Sens. Actuators, B 129, 666 (2008).Google Scholar
16.Arnold, S.P., Prokes, S.M., Perkins, F.K., and Zaghloul, M.E.: Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor. Appl. Phys. Lett. 95, 103102 (2009).Google Scholar
17.Ueda, N., Hosono, H., Waseda, R., and Kawazoe, H.: Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals. Appl. Phys. Lett. 70, 3561 (1997).Google Scholar
18.Zhang, J., Xia, C., Deng, Q., Xu, W., Shi, H., Wu, F., and Xu, J.: Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3: Sn. J. Phys. Chem. Solids. 67, 1656 (2006).Google Scholar
19.Suzuki, N., Ohira, S., Tanaka, M., Sugawara, T., Nakajima, K., and Shishido, T.: Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal. Phys. Status Solidi. C 4, 2310 (2007).Google Scholar
20.Frank, J., Fleischer, M., Meixner, H., and Feltz, A.: Enhancement of sensitivity and conductivity of semiconducting Ga2O3 gas sensors by doping SnO2. Sens. Actuators, B 49, 110 (1998).Google Scholar
21.Mazeina, L., Picard, Y.N., Maximenko, S.I., Perkins, F.K., Glaser, E.R., Twigg, M.E., Freitas, J.A. Jr., and Prokes, S.M.: Growth of Sn-doped β-Ga2O3 nanowires and Ga2O3-SnO2 heterostructures for gas sensing applications. Cryst. Growth Des. 9, 4471 (2009).Google Scholar
22.Jin, C., Kim, H., Baek, K., Kim, H.W., and Lee, C.: Preparation, structure, and photoluminescence properties of Ga2O3/SnO2 coaxial nanowires. Cryst. Res. Technol. 45, 199 (2010).Google Scholar
23.Kim, K.W., Cho, P.S., Kim, S.J., Lee, J.H., Kang, C.Y., Kim, J.S., and Yoon, S.J.: The selective detection of C2H5OH using SnO2–ZnO thin film gas sensors prepared by combinatorial solution deposition. Sens. Actuators, B 123, 318 (2007).Google Scholar
24.Chen, Y.J., Zhu, C.L., Wang, L.J., Gao, P., Cao, M.S., and Shi, X.L.: Synthesis and enhanced ethanol sensing characteristics of α-Fe2O3/SnO2 core–shell nanorods. Nanotechnology 20, 045502 (2009).Google Scholar
25.Hwang, I.S., Kim, S.J., Choi, J.K., Choi, J.W., Ji, H.J., Kim, G.T., Cao, G., and Lee, J.H.: Synthesis and gas sensing characteristics of highly crystalline ZnO-SnO2 core-shell nanowires. Sens. Actuators, B 148, 595 (2010).Google Scholar
26.Choi, G., Satyanarayana, L., and Park, J.: Effect of process parameters on surface morphology and characterization of PE-ALD SnO2 films for gas sensing. Appl. Surf. Sci. 252, 7878 (2006).Google Scholar
27.Kim, D.H., Kwon, J.H., Kim, M.Y., and Hong, S.H.: Structural characteristics of epitaxial SnO2 films deposited on a- and m-cut sapphire by ALD. J. Cryst. Growth. 322, 33 (2011).Google Scholar
28.Park, J.J., Lee, W.J., Lee, G.H., Kim, I.S., Shin, B.C., and Yoon, S.G.: Very thin TiO2 films prepared by plasma enhanced atomic layer. Integr. Ferroelectr. 68, 129 (2004).Google Scholar
29.Wagner, R.S. and Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).Google Scholar
30.Auer, E., Lugstein, A., Löffler, S., Hyun, Y.J., Brezna, W., Bertagnolli, E., and Pongratz, P.: Ultrafast VLS growth of epitaxial β-Ga2O3 nanowires. Nanotechnology 20, 434017 (2009).Google Scholar
31.Edwards, D.D. and Mason, T.O.: Subsolidus phase diagram in the Ga2O3-In2O3-SnO2 system. J. Am. Ceram. Soc. 81, 3285 (1998).Google Scholar
32.Maekawa, T., Tamaki, J., Miura, N., and Yamazoe, N.: Development of SnO2-based ethanol gas sensor. Sens. Actuators, B 9, 63 (1992).Google Scholar
33.Zhang, Y., He, X., Li, J., Miao, Z., and Huang, F.: Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sens. Actuators, B 132, 67 (2008).Google Scholar
34.Zhang, J., Wang, S., Wang, Y., Xu, M., Xia, H., Zhang, S., Huang, W., Guo, X., and Wu, S.: Facile synthesis of highly ethanol-sensitive SnO2 nanoparticles. Sens. Actuators, B 139, 369 (2009).Google Scholar
35.Qi, Q., Zhang, T., Liu, L., Zheng, X., and Lu, G.: Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123. Sens. Actuators, B 141, 174 (2009).Google Scholar
36.Ogawa, H., Nishikawa, M., and Abe, A.: Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J. Appl. Phys. 53, 4448 (1982).Google Scholar
37.Kim, W.S., Lee, B.S., Kim, D.H., Kim, H.C., Yu, W.R., and Hong, S.H.: SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology 21, 245605 (2010).Google Scholar
38.Lee, Y.C., Huang, H., Tan, O.K., and Tse, M.S.: Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films. Sens. Actuators, B 132, 239 (2008).Google Scholar
39.Qi, Q., Zhang, T., Liu, L., and Zheng, X.: Synthesis and toluene sensing properties of SnO2 nanofibers. Sens. Actuators, B 137, 471 (2009).Google Scholar
40.Yu, L., Fan, X., Qi, L., Ma, L., and Yan, W.: Dependence of morphologies for SnO2 nanostructures on their sensing property. Appl. Surf. Sci. 257, 3140 (2011).Google Scholar
41.Hieua, N.V., Kim, H.R., Ju, B.K., and Lee, J.H.: Enhanced performance of SnO2 nanowires ethanol sensor by functionalizing with La2O3. Sens. Actuators, B 133, 228 (2008).Google Scholar
42.Liu, Y., Koep, E., and Liu, M.: A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition. Chem. Mater. 17, 3997 (2005).Google Scholar
43.Fang, Y.K. and Lee, J.J.: A tin oxide thin film sensor with high ethanol sensitivity. Thin Solid Films. 169, 51 (1989).Google Scholar
44.Ansari, S.G., Boroojerdian, P., Sainkar, S.R., Karekar, R.N., Aiyer, R.C., and Kulkarni, S.K.: Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles. Thin Solid Films 295, 271 (1997).Google Scholar