Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T07:46:08.915Z Has data issue: false hasContentIssue false

Fabrication of multilaminated Si3N4–Si3N4/TiN composites and its anisotropic fracture behavior

Published online by Cambridge University Press:  31 January 2011

Jow-Lay Huang
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan, Taiwan 701, Republic of China
Yen-Lon Chang
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan, Taiwan 701, Republic of China
Horng-Hwa Lu
Affiliation:
Department of Materials Science and Engineering, National Cheng-Kung University, Tainan, Taiwan 701, Republic of China
Get access

Abstract

Laminated composites containing alternate layers of Si3N4 and TiN/Si3N4 materials were used as model material for investigating the crack behaviors and mechanical properties. Results indicated that both strength and toughness in laminated composites were higher than that of monolithic silicon nitride. The failure profiles were affected by the stored strain energy prior to failure and the stress gradient in each layer. Cracks deviated successively from one layer to the other due to periodic stress distribution. Samples with better strength and toughness also had a longer crack propagation path and higher amplitude of crack deviation. The periodic stress distribution in laminated composites was confirmed by the measurements of indentation crack length. Results also suggested a tensile stress in the Si3N4 layer and compressive stress in the TiN/Si3N4 layer, in directions normal to the free sample interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mitomo, M. and Uenosono, S., J. Am. Ceram. Soc. 75 (1), 103–108 (1992).CrossRefGoogle Scholar
2.Li, C. H., Lee, D. J., and Lui, S. C., J. Am. Ceram. Soc. 75 (7), 1777–1785 (1992).Google Scholar
3.Becher, P. F., Lin, H. T., and Huang, S. L., in Silica Nitride Ceramics—Scientific and Technological Advances, edited by Chen, I-W., Becher, P. F., Mitomo, M., Petzow, G., and Yen, T-S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), pp. 147158.Google Scholar
4.Gogotsi, Y. G., J. Mater. Sci. 29, 25412556 (1994).Google Scholar
5.Yaroshenko, V., Gogotsi, Y., and Osipova, I., Ceramics Today–Tomorrow's Ceramics, edited by P., Vincenzini (Elsevier Science Publishers B. V., 1991), pp. 16311641.Google Scholar
6.Huang, J. L., Chen, S. Y., and Lee, M. T., J. Mater. Res. 9, 23492354 (1994).Google Scholar
7.Smith, A., Abed, A., Edress, H. J., and Hendry, A., in Key Engineering Materials (Trans Tech Publications, Switzerland, 1994), Vol. 89–91, p. 83.Google Scholar
8.Bellosi, A., Fiegna, A., Giachello, A., and Demaestri, P., in Advanced Structural Inorganic Composition, edited by P., Vincenzini (Elsevier Science Publishers B. V., 1991), p. 225.Google Scholar
9.Huang, J. L., Lee, M. T., Lu, H. H., and Lii, D. F., Mater. Chem. Phys. 45, 203210 (1996).CrossRefGoogle Scholar
10.Harmer, M. P., Chan, H. M., and Miller, G. A., J. Am. Ceram. Soc. 75 (7), 1715–1728 (1992).Google Scholar
11.Marshall, D. B., Ratto, J. J., and Lange, F. F., J. Am. Ceram. Soc. 74 (12), 2979–2987 (1991).CrossRefGoogle Scholar
12.Virkar, A. V., Huang, J. L., and Cutler, R. A., J. Am. Ceram. Soc. 70 (3), 164–170 (1987).CrossRefGoogle Scholar
13.Moya, J. S., Sanchez-Herencia, A. J., Jrequena and Moreno, R., J. Mater. Lett. 14, 333335 (1992).CrossRefGoogle Scholar
14.Abe, O. and Yamada, Jun-ichi, J. Ceram. Soc. Jpn. 102, 627631 (1994).CrossRefGoogle Scholar
15.Marshall, D. B., Am. Ceram Soc. Bull. 71 (6), 969–973 (1992).Google Scholar
16.Chartier, T., Merle, D., and Bessen, J. L., J. Eur. Ceram. Soc. 15, 101107 (1995).CrossRefGoogle Scholar
17.Boch, P., Chartier, T., and Huttepain, M., J. Am. Ceram. Soc. 69 (8), c191–c192 (1992).Google Scholar
18.Chartier, T. and Bessen, J. L., Science of Ceramics, edited by D., Taylor (The Institute of Ceramics, U.K., 1988), Vol. 14, pp. 639644.Google Scholar
19.Chartier, T., Bessen, J. L., and Boch, P., Advances in Ceramics, Science and Technology of Zirconia III, edited by S. S, ōmiya (Westerville, OH, 1988), Vol. 24, pp. 11311138.Google Scholar
20.Clegg, W. J., Kendall, N. McN.Button, T. W. Alford, and Birchall, J. D., Nature 347 (4), 455–457 (1990).Google Scholar
21.Clegg, W. J., Acta Metall. Mater. 40 (11), 3085–3093 (1992).CrossRefGoogle Scholar
22.Phillipps, A. J., Clegg, W. J., and Clyne, T. W., Acta Metall. Mater. 41 (3), 805–817 (1993).Google Scholar
23.Phillipps, A. J., Clegg, W. J., and Clyne, T. W., Acta Metall. Mater. 41 (3), 819–827 (1993).Google Scholar
24.Evans, A. G. and Charles, A., J. Am. Ceram. Soc. 59 (7–8), 371–372 (1976).CrossRefGoogle Scholar
25.Chantikal, P., Anstis, G. R., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc. 64 (9), 539–543 (1981).Google Scholar
26.Virkar, A. V., Jue, J. F., Hansen, J. J., and Cutler, R. A., J. Am. Ceram. Soc. 71 (3), C-148–151 (1988).Google Scholar
27.Cutler, R. A. and Bright, J. D., J. Am. Ceram. Soc. 70 (10), 714–718 (1987).Google Scholar
28.Hansen, J. J., Cutler, R. A., Shetty, D. K., and Virkar, A. V., J. Am. Ceram. Soc. 71 (12), C501–505 (1988).CrossRefGoogle Scholar
29.Torti, M. T., Jr. and Richerson, D. W., “High strength composite ceramic structure,” U.S. Patent No. 3911188, Oct. 7, 1975.Google Scholar
30.Lakshminarayanan, R., Shetty, D. K., and Cutler, R. A., J. Am. Ceram. Soc. 79 (1), 79–87 (1996).CrossRefGoogle Scholar
31.Marshall, D. B. and Lawn, B. R., J. Mater. Sci. 14, 20012012 (1979).Google Scholar
32.Lawn, B. R., Evans, A. G., and Marshall, D. B., J. Am. Ceram. Soc. 63 (9–10), 574–581 (1996).Google Scholar