Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T07:23:45.524Z Has data issue: false hasContentIssue false

Fabrication of nanocomposites through diffusion bonding under high-pressure torsion

Published online by Cambridge University Press:  19 July 2018

Megumi Kawasaki*
Affiliation:
School of Mechanical, Industrial & Manufacturing Engineering, Oregon State University, Corvallis, Oregon 97331-6001, USA
Jae-Kyung Han
Affiliation:
School of Mechanical, Industrial & Manufacturing Engineering, Oregon State University, Corvallis, Oregon 97331-6001, USA
Dong-Hyun Lee
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
Jae-il Jang
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
Terence G. Langdon
Affiliation:
Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, U.K.
*
a)Address all correspondence to this author. e-mail: megumi.kawasaki@oregonstate.edu
Get access

Abstract

This report summarizes a recent study demonstrating simple and rapid synthesis of a new Al–Mg alloy system and ultimately synthesizing a metal matrix nanocomposite, which was achieved by processing stacked disks of the two dissimilar metals by conventional high-pressure torsion (HPT) processing. The synthesized Al–Mg alloy system exhibits exceptionally high hardness through rapid diffusion bonding and simultaneous nucleation of intermetallic phases with increased numbers of HPT turns through 20, and improved plasticity was demonstrated by increasing strain rate sensitivity in the alloy system after post-deformation annealing. An additional experiment demonstrated that the alternate stacking of high numbers of dissimilar metal disks may produce a faster metal mixture during HPT. Metal combinations of Al–Cu, Al–Fe, and Al–Ti were processed by the same HPT procedure from separate pure metals to examine the feasibility of the processing technique. The microstructural analysis confirmed the capability of HPT for the formation of heterostructures across the disk diameters in these processed alloy systems. The HPT processing demonstrates a considerable potential for the joining and bonding of dissimilar metals at room temperature and the expeditious fabrication of a wide range of new metal systems.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Lu, K.: The future of metals. Science 328, 319 (2010).CrossRefGoogle ScholarPubMed
Liddicoat, P.V., Liao, X.Z., Zhu, Y.T., Zhao, Y.H., Lavernia, E.J., Murashkin, M.Y., Valiev, R.Z., and Ringer, S.P.: New hierarchy of solute architecture breaks strength ceiling in a nanocrystalline aluminium alloy. Nat. Commun. 1, 63/1 (2010).Google Scholar
Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2010).CrossRefGoogle Scholar
Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., and Zhu, Y.T.: Fundamentals of superior properties in bulk nanoSPD materials. Mater. Res. Lett. 4, 1 (2016).CrossRefGoogle Scholar
Estrin, Y. and Vinogradov, A.: Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 651, 782 (2013).CrossRefGoogle Scholar
Zhilyaev, A.P. and Langdon, T.G.: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53, 893 (2008).CrossRefGoogle Scholar
Langdon, T.G.: Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 61, 7035 (2013).CrossRefGoogle Scholar
Korznikov, A.V., Dimitrov, O., Korznikova, G.F., Dallas, J.P., Quivy, A., Valiev, R.Z., and Mukherjee, A.: Nanocrystalline structure and phase transformation of the intermetallic compound TiAl processed by severe plastic deformation. Nanostruct. Mater. 11, 17 (1999).CrossRefGoogle Scholar
Kazantseva, N.V., Mushnikov, N.V., Popov, A.G., Terent’ev, P.B., and Pilyugin, V.P.: Severe plastic deformation and hydrogenation of the titanium aluminides. J. Alloy. Comp. 509, 9307 (2011).CrossRefGoogle Scholar
Srinivasarao, B., Zhilyaev, A.P., Muñoz-Moreno, R., and Pérez-Prado, M.T.: Effect of high pressure torsion on the microstructure evolution of a gamma Ti–45Al–2Nb–2Mn–0.8 vol% TiB2 alloy. J. Mater. Sci. 48, 4599 (2013).CrossRefGoogle Scholar
Han, J-K., Li, X., Dippenaar, R., Liss, K-D., and Kawasaki, M.: Microscopic plastic response in a bulk nano-structured TiAl intermetallic compound processed by high-pressure torsion. Mater. Sci. Eng., A 714, 84 (2018).CrossRefGoogle Scholar
Zhilyaev, A.P., Gimazov, A.A., Raab, G.I., and Langdon, T.G.: Using high-pressure torsion for the cold-consolidation of copper chips produced by machining. Mater. Sci. Eng., A 486, 123 (2008).CrossRefGoogle Scholar
Edalati, K., Yokoyama, Y., and Horita, Z.: High-pressure torsion of machining chips and bulk discs of amorphous Zr50Cu30Al10Ni10. Mater. Trans. 51, 23 (2010).CrossRefGoogle Scholar
Korznikov, A.V., Safarov, I.M., Laptionok, D.V., and Valiev, R.Z.: Structure and properties of superfine-grained iron compacted out of ultradisperse powder. Acta Metall. Mater. 39, 3193 (1991).CrossRefGoogle Scholar
Stolyarov, V.V., Zhu, Y.T., Lowe, T.C., Islamgaliev, R.K., and Valiev, R.Z.: Processing nanocrystalline Ti and its nanocomposites from micrometer-sized Ti powder using high pressure torsion. Mater. Sci. Eng., A 282, 78 (2000).CrossRefGoogle Scholar
Edalati, K., Horita, Z., Fujiwara, H., and Ameyama, K.: Cold consolidation of ball-milled titanium powders using high-pressure torsion. Metall. Mater. Trans. A 41, 3308 (2010).CrossRefGoogle Scholar
Cubero-Sesin, J.M. and Horita, Z.: Powder consolidation of Al–10 wt% Fe alloy by high-pressure torsion. Mater. Sci. Eng., A 558, 462 (2012).CrossRefGoogle Scholar
Zhang, Y., Sabbaghianrad, S., Yang, H., Topping, T., Langdon, T.G., Lavernia, E.J., Schoenung, J.M., and Nutt, S.: Two-step SPD processing of a trimodal Al-based nano-composite. Metall. Mater. Trans. A 46, 5877 (2015).CrossRefGoogle Scholar
Zhilyaev, A.P., Ringot, G., Huang, Y., Cabrera, J.M., and Langdon, T.G.: Mechanical behavior and microstructure properties of titanium powder consolidated by high-pressure torsion. Mater. Sci. Eng., A 688, 498 (2017).CrossRefGoogle Scholar
Ahn, B., Zhilyaev, A.P., Lee, H-J., Kawasaki, M., and Langdon, T.G.: Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature. Mater. Sci. Eng., A 635, 109 (2015).CrossRefGoogle Scholar
Ahn, B., Lee, H-J., Choi, I.C., Kawasaki, M., Jang, J-I., and Langdon, T.G.: Micro-mechanical behavior of an exceptionally strong metal matrix nanocomposite processed by high-pressure torsion. Adv. Eng. Mater. 18, 1001 (2016).CrossRefGoogle Scholar
Kawasaki, M., Ahn, B., Lee, H-J., Zhilyaev, A.P., and Langdon, T.G.: Using high-pressure torsion to process an aluminum–magnesium nanocomposite through diffusion bonding. J. Mater. Res. 31, 88 (2016).CrossRefGoogle Scholar
Han, J-K., Lee, H-J., Jang, J-i., Kawasaki, M., and Langdon, T.G.: Micro-mechanical and tribological properties of aluminum–magnesium nanocomposites processed by high-pressure torsion. Mater. Sci. Eng., A 684, 318 (2017).CrossRefGoogle Scholar
Figueiredo, R.B., Cetlin, P.R., and Langdon, T.G.: Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater. Sci. Eng., A 528, 8198 (2011).CrossRefGoogle Scholar
Kawasaki, M.: Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J. Mater. Sci. 49, 18 (2014).CrossRefGoogle Scholar
Kawasaki, M., Alhajeri, S.N., Xu, C., and Langdon, T.G.: The development of hardness homogeneity in pure aluminum and aluminum alloy disks processed by high-pressure torsion. Mater. Sci. Eng., A 529, 345 (2011).CrossRefGoogle Scholar
Lee, H-J., Lee, S.K., Jung, K.H., Lee, G.A., Ahn, B., Kawasaki, M., and Langdon, T.G.: Evolution in hardness and texture of a ZK60A magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng., A 630, 90 (2015).CrossRefGoogle Scholar
Samson, S.: The crystal structure of the phase β-Mg2Al3. Acta Crystallogr. 19, 401 (1965).CrossRefGoogle Scholar
Lutterotti, L.: Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 334 (2010).CrossRefGoogle Scholar
Lucas, B.N. and Oliver, W.C.: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601 (1999).CrossRefGoogle Scholar
Shim, S., Jang, J-I., and Pharr, G.M.: Extraction of flow properties of single-crystal silicon carbide by nanoindentation and finite-element simulation. Acta Mater. 56, 3824 (2008).CrossRefGoogle Scholar
Valiev, R.Z., Alexandrov, I.V., Zhu, Y.T., and Lowe, T.C.: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5 (2002).CrossRefGoogle Scholar
Valiev, R.: Materials science: Nanomaterial advantage. Nature 419, 887 (2002).CrossRefGoogle ScholarPubMed
Valiev, R.: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).CrossRefGoogle ScholarPubMed
Kumar, P., Kawasaki, M., and Langdon, T.G.: Review: Overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures. J. Mater. Sci. 51, 7 (2016).CrossRefGoogle Scholar
Ovid’ko, I.A., Valiev, R.Z., and Zhu, Y.T.: Review on superior strength and enhanced ductility of metallic nanomaterials. Prog. Mater. Sci. 94, 462 (2018).CrossRefGoogle Scholar
Mueller, J., Durst, K., Amberger, D., and Göken, M.: Local investigations of the mechanical properties of ultrafine grained metals by nanoindentations. Mater. Sci. Forum 31, 503 (2006).Google Scholar
Böhner, A., Maier, V., Durst, K., Höppel, H.W., and Göken, M.: Macro- and nanomechanical properties and strain rate sensitivity of accumulative roll bonded and equal channel angular pressed ultrafine-grained materials. Adv. Eng. Mater. 13, 251 (2011).CrossRefGoogle Scholar
Maier, V., Merle, B., Göken, M., and Durst, K.: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. J. Mater. Res. 28, 1177 (2013).CrossRefGoogle Scholar
Wheeler, J.M., Maier, V., Durst, K., Göken, M., and Michler, J.: Activation parameters for deformation of ultrafine-grained aluminium as determined by indentation strain rate jumps at elevated temperature. Mater. Sci. Eng., A 585, 108 (2013).CrossRefGoogle Scholar
Choi, I-C., Lee, D-H., Ahn, B., Durst, K., Kawasaki, M., Langdon, T.G., and Jang, J-i.: Enhancement of strain-rate sensitivity and shear yield strength of a magnesium alloy processed by high-pressure torsion. Scripta Mater. 94, 44 (2015).CrossRefGoogle Scholar
Kawasaki, M., Ahn, B., Kumar, P., Jang, J-i., and Langdon, T.G.: Nano- and micro-mechanical properties of ultrafine-grained materials processed by severe plastic deformation techniques. Adv. Eng. Mater. 19, 1600578 (2017).CrossRefGoogle Scholar
Valiev, R.Z., Sergueeva, A.V., and Mukherjee, A.K.: The effect of annealing on tensile deformation behavior of nanostructured SPD titanium. Scripta Mater. 49, 669 (2003).CrossRefGoogle Scholar
Kawasaki, M. and Langdon, T.G.: Using severe plastic deformation to fabricate strong metal matrix composites. Mater. Res. 20(Suppl. 1), 46 (2017).CrossRefGoogle Scholar
Zhilyaev, A.P., Lee, S., Nurislamova, G.V., Valiev, R.Z., and Langdon, T.G.: Microhardness and microstructural evolution in pure nickel during high-pressure torsion. Scripta Mater. 44, 2753 (2001).CrossRefGoogle Scholar
Jiang, H., Zhu, Y.T., Butt, D.P., Alexandrov, I.V., and Lowe, T.C.: Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater. Sci. Eng., A 290, 128 (2000).CrossRefGoogle Scholar
Zhilyaev, A.P., Oh-ishi, K., Langdon, T.G., and McNelley, T.R.: Microstructural evolution in commercial purity aluminum during high-pressure torsion. Mater. Sci. Eng., A 277, 410 (2005).Google Scholar
Divinski, S.V., Reglitz, G., Rösner, H., Estrin, Y., and Wilde, G.: Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing. Acta Mater. 59, 1974 (2011).CrossRefGoogle Scholar
Lee, D-H., Choi, I-C., Seok, M-Y., He, J., Lu, Z., Suh, J-Y., Kawasaki, M., Langdon, T.G., and Jang, J-i.: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. J. Mater. Res. 30, 2804 (2015).CrossRefGoogle Scholar
Sauvage, X., Wilde, G., Divinski, S.V., Horita, Z., and Valiev, R.Z.: Review: Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater. Sci. Eng., A 540, 1 (2012).CrossRefGoogle Scholar
Edalati, K., Hashiguchi, Y., Pereira, P.H.R., Horita, Z., and Langdon, T.G.: Effect of temperature rise on microstructural evolution during high-pressure torsion. Mater. Sci. Eng., A 714, 167 (2018).CrossRefGoogle Scholar
Oh-ishi, K., Edalati, K., Kim, H.S., Hono, K., and Horita, Z.: High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in the aluminum–copper system. Acta Mater. 61, 3482 (2013).CrossRefGoogle Scholar
Bouaziz, O., Kim, H.S., and Estrin, Y.: Architecturing of metal-based composites with concurrent nanostructuring: A new paradigm of materials design. Adv. Eng. Mater. 15, 336 (2013).CrossRefGoogle Scholar
Qiao, X., Li, X., Zhang, X., Chen, Y., Zheng, M., Golovin, I.S., Gao, N., and Starink, M.J.: Intermetallics formed at interface of ultrafine grained Al/Mg bi-layered disks processed by high pressure torsion at room temperature. Mater. Lett. 181, 187 (2016).CrossRefGoogle Scholar
Ibrahim, N., Peterlechner, M., Emeis, F., Wegner, M., Divinski, S.V., and Wilde, G.: Mechanical alloying via high-pressure torsion of the immiscible Cu50Ta50 system. Mater. Sci. Eng., A 685, 19 (2017).CrossRefGoogle Scholar
Edalati, K. and Horita, Z.: Universal plot for hardness variation in pure metals processed by high-pressure torsion. Mater. Trans. 51, 1051 (2010).CrossRefGoogle Scholar
Lee, Z., Nutt, S.R., Rodriguez, R., Hayes, R.W., and Lavernia, E.J.: Microstructural evolution and deformation of cryomilled nanocrystalline Al–Ti–Cu alloy. Metall. Mater. Trans. A 34, 1473 (2003).CrossRefGoogle Scholar
Edalati, K., Toh, S., Iwaoka, H., Watanabe, M., Horita, Z., Kashioka, D., Kishida, K., and Inui, H.: Ultrahigh strength and high plasticity in TiAl intermetallics with bimodal grain structure and nanotwins. Scripta Mater. 67, 814 (2012).CrossRefGoogle Scholar
Martinsen, K., Hu, S.J., and Carlson, B.E.: Joining of dissimilar materials. CIRP Ann. 64, 679 (2015).CrossRefGoogle Scholar
Wu, X.L., Jiang, P., Chen, L., Zhang, J.F., Yuan, F.P., and Zhu, Y.T.: Synergetic strengthening by gradient structure. Mater. Res. Lett. 2, 185 (2014).CrossRefGoogle Scholar
Lu, K.: Making strong nanomaterials ductile with gradient. Science 345, 1455 (2014).CrossRefGoogle Scholar
Wu, X.L., Jiang, P., Chen, L., Yuan, F.P., and Zhu, Y.T.: Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. U. S. A. 111, 7197 (2014).CrossRefGoogle ScholarPubMed
Liu, Y., Jin, B., and Lu, J.: Mechanical properties and thermal stability of nanocrystallized pure aluminum produced by surface mechanical attrition treatment. Mater. Sci. Eng., A 636, 446 (2015).CrossRefGoogle Scholar
Wu, X. and Zhu, Y.: Heterogeneous materials: A new class of materials with unprecedented mechanical properties. Mater. Res. Lett. 5, 527 (2017).CrossRefGoogle Scholar