Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T01:26:20.698Z Has data issue: false hasContentIssue false

Fast assembly of bio-inspired nanocomposite films

Published online by Cambridge University Press:  31 January 2011

Viatcheslav Vertlib
Affiliation:
Laboratory for Clay Mineralogy, Institute for Geotechnical Engineering, ETH Zurich, 8093 Zurich, Switzerland
Marianne Dietiker
Affiliation:
Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
Michael Plötze*
Affiliation:
Laboratory for Clay Mineralogy, Institute for Geotechnical Engineering, ETH Zurich, 8093 Zurich, Switzerland
Lee Yezek
Affiliation:
Laboratory for Clay Mineralogy, Institute for Geotechnical Engineering, ETH Zurich, 8093 Zurich, Switzerland
Ralph Spolenak
Affiliation:
Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
Alexander M. Puzrin
Affiliation:
Laboratory for Clay Mineralogy, Institute for Geotechnical Engineering, ETH Zurich, 8093 Zurich, Switzerland
*
a)Address all correspondence to this author.e-mail: michael.ploetze@igt.baug.ethz.ch
Get access

Abstract

This paper presents a spin-coating layer-by-layer assembly process to prepare multilayered polyelectrolyte-clay nanocomposites. This method allows for the fast production of films with controlled layered structure. The preparation of a 100-bilayer film with a thickness of about 330 nm needs less than 1 h, which is 20 times faster than conventional dip-coating processes maintaining the same hardness and modulus values. For validation of this technique, nanocomposite films with thicknesses up to 0.5 μm have been created with the common dip self-assembly and with the spin coating layer-by-layer assembly technique from a poly(diallyldimethylammonium)chloride (PDDA) solution and a suspension of a smectite clay mineral (Laponite). Geometrical characteristics (thickness, roughness, and texture) as well as mechanical characteristics (hardness and modulus) of the clay-polyelectrolyte films have been studied. The spin-coated nanocomposite films exhibit clearly improved mechanical properties (hardness 0.4 GPa, elastic modulus 7 GPa) compared to the “pure” polymer film, namely a sixfold increase in hardness and a 17-fold increase in Young’s modulus.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tang, Zh., Kotov, N.A., Magonov, S.Ozturk, B.: Nanostructured artificial nacre. Nat. Mater. 6, 413 2003CrossRefGoogle Scholar
2Kotov, N.A.: Ordered layered assemblies of nanoparticles. MRS Bull. 26, 992 2001CrossRefGoogle Scholar
3Rubner, M.: Material Science: Synthetic sea shell. Nature 423, 925 2003CrossRefGoogle ScholarPubMed
4Barthelat, F., Li, C.M., Comi, C.Espinosa, H.D.: Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 21, 1977 2006CrossRefGoogle Scholar
5Barthelat, F., Tang, H., Zavattieri, P.D., Li, C-M.Espinosa, H.D.: On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 306 2007CrossRefGoogle Scholar
6Decher, G.Hong, J-D.: Buildup of ultrathin multilayer films by a self-assembly process. 1. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol. Chem. Macromol. Symp. 46, 321 1991CrossRefGoogle Scholar
7Kleinfeld, E.Ferguson, G.: Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science 265, 370 1994CrossRefGoogle ScholarPubMed
8Ariga, K., Lvov, Y., Ichinose, I.Kunitake, T.: Ultrathin films of inorganic materials (SiO2 nanoparticle, montmorillonite microplate, and molybdenum oxide) prepared by alternate layer-by-layer assembly with organic polyions. Appl. Clay Sci. 15, 137 1999Google Scholar
9Deville, S., Saiz, E., Nalla, R.K.Tomsia, A.P.: Freezing as a path to build complex composites. Science 311, 515 2006CrossRefGoogle ScholarPubMed
10Bennadji-Gridi, F., Smith, A.Bonnet, J.P.: Montmorillonite based artificial nacre prepared via a drying process. Mater. Sci. Eng., B 130, 132 2006CrossRefGoogle Scholar
11Brinker, C.J., Lu, Y.F., Sellinger, A.Fan, H.Y.: Evaporation-induced self assembly: Nanostructures made easy. Adv. Mater. 11, 579 19993.0.CO;2-R>CrossRefGoogle Scholar
12Gibbs, R.J.: Error due to segregation in quantitative clay mineral x-ray diffraction mounting techniques. Am. Mineral. 50, 741 1965Google Scholar
13Zevin, L.Viaene, W.: Impact of clay particle orientation on quantitative clay diffractometry. Clay Miner. 25, 401 1990CrossRefGoogle Scholar
14Cho, J., Char, K., Kookheon, H., Jong-Dal, H.Lee, Ki-B.: Fabrication of highly ordered multilayer films using a spin self-assembly method. Adv. Mater. 13, 1076 20013.0.CO;2-M>CrossRefGoogle Scholar
15Chiarelli, P.A., Johal, M.S., Casson, J.L., Roberts, J.B., Robinson, J.M.Wang, H-L.: Controlled fabrication of polyelectrolyte multilayer thin films using spin-assembly. Adv. Mater. 13, 1167 2001Google Scholar
16Vuillaume, P.Y., Glinel, K., Jonas, A.M.Laschewsky, A.: Ordered polyelectrolyte “multilayers”. 6. Effect of molecular parameters on the formation of hybrid multilayers based on poly(diallylammonium) salts exfoliated clay. Chem. Mater. 15, 3625 2003CrossRefGoogle Scholar
17Glinel, K., Laschewsky, A.Jonas, A.M.: Ordered polyelectrolyte “multilayers”. 3. Complexing clay platelets with polycations of varying structure. Macromolecules 34, 5267 2001CrossRefGoogle Scholar
18Glinel, K., Laschewsky, A.Jonas, A.M.: Ordered polyelectrolyte “multilayers”. 4. Internal structure of clay-based multilayers. J. Phys. Chem. B 106, 11246 2002CrossRefGoogle Scholar
19Kotov, N.A., Magonov, S.Tropsha, E.: Layer-by-layer self-assembly of aluminosilicate-polyelectrolyte composites: Mechanism of deposition, crack resistance, and perspectives for novel membrane materials. Chem. Mater. 10, 886 1998Google Scholar
20Kotov, N.A., Haraszti, T., Turi, L., Zavala, G., Geer, R.E., Dekany, I.Fendler, J.H.: Mechanism of and defect formation in the self-assembly of polymeric polycation-montmorillonite ultrathin films. J. Am. Chem. Soc. 119, 6821 1997CrossRefGoogle Scholar
21Oliver, W.C.Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992CrossRefGoogle Scholar
22Doerner, M.F.Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 1986Google Scholar
23King, R.B.: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657 1987Google Scholar
24Saha, R.Nix, W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 2002Google Scholar
25Pavoor, P.V., Bellare, A., Strom, A., Yang, D.H.Cohen, R.E.: Mechanical characterization of polyelectrolyte multilayers using quasi-static nanoindentation. Macromolecules 37, 4865 2004CrossRefGoogle Scholar
26Gan, L., BenNissan, B.BenDavid, A.: Modelling and finite element analysis of ultra-microhardness indentation of thin films. Thin Solid Films 291, 362 1996CrossRefGoogle Scholar
27Fornes, T.D.Paul, D.R.: Modelling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44, 4993 2003Google Scholar
28Fan, X.W., Park, M.K., Xia, C.J.Advincula, R.: Surface structural characterization and mechanical testing by nanoindentation measurements of hybrid polymer/clay nanostructured multilayer films. J. Mater. Res. 17, 1622 2002CrossRefGoogle Scholar
29Podsiadlo, P., Tang, Z., Shim, B.S.Kotov, N.A.: Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites. Nano Lett. 7, 1224 2007Google Scholar
30Manceau, A., Chateigner, D.Gates, W.P.: Polarized EXAFS, distance-valence least-squares modelling (DVLS), and quantitative texture analysis approaches to the structural refinement of Garfield nontronite. Phys. Chem. Miner. 25, 347 1998Google Scholar
31Avery, R.G.Ramsay, J.D.F.: Colloidal properties of synthetic hectorite clay dispersions. II. Light and small angle neutron scattering. J. Colloid Interface Sci. 109, 448 1986CrossRefGoogle Scholar
32Van Duffel, B., Schoonheydt, R.A., Grim, C.P.M.De Schryver, F.C.: Multilayered clay films: Atomic force microscopy study and modeling. Langmuir 15, 7520 1999Google Scholar
33Wang, J., Shi, F.G., Nieh, T.G., Zhao, B., Brongo, M.R., Qu, S.Rosenmayer, T.: Thickness dependence of elastic modulus and hardness of on-wafer low-k ultrathin polytetrafluoroethylene films. Scripta Mater. 42, 687 2000CrossRefGoogle Scholar
34Hu, X.Z.Lawn, B.R.: A simple indentation stress-strain relation for contacts with spheres on bilayer structures. Thin Solid Films 322, 225 1998CrossRefGoogle Scholar
35Jäger, I.L.: Comment on: “Effects of the substrate on the determination of thin films mechanical properties by nanoindentation” by Saha and Nix [Acta Mater. 50, 23 2002]. Scripta Mater. 47, 429 2002CrossRefGoogle Scholar