Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T02:57:07.487Z Has data issue: false hasContentIssue false

Fe2+ Contents and Magnetocrystalline Anisotropy in Iron Defect LiZnTiMn Ferrites

Published online by Cambridge University Press:  31 January 2011

A. Iglesias
Affiliation:
Instituto Nacional de Investigaciones Metroló;gicas, Consulado 206 entre Animas y Trocadero, La Habana 10200, Cuba
J. Balmaseda
Affiliation:
Centro Nacional de Investigaciones Científicas, Ave 25 y calle 158, Cubanacán, Playa, Habana 6990, Cuba
A. González Arias*
Affiliation:
Dpto. Física Aplicada, Facultad de Física, Universidad de La Habana, Habana 10400, Cuba
*
a)Address all correspondence to this author. e-mail: arnaldo@ff.oc.uh.cu;gonzalezarias@usa.net
Get access

Abstract

An investigation of the effects of the iron defect k in LiZnTiMn ferrites using Mössbauer spectroscopy and ferromagnetic resonance techniques was carried out in single-phased samples. Results show that the isomer shifts have values corresponding to a compound with either low-spin Fe(II), low-spin Fe(III), or high-spin Fe(III). On the other hand, the Lande factor and the ferromagnetic resonance linewidth disclosed that g is always very close to 2, being equal to 2.02 when k = 0.06. A minimum in ΔH was detected for this value of k. From these results, the possible presence of Fe2+ in the samples could be excluded, and it was concluded that the changes in ΔH are due to the variation of the Fe(III) contents in the tetrahedral and octahedral sites. The existence of the minimum in ΔH is due to a compensation point in the magnetocrystalline anisotropy.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Iglesias, A., Guerasimenko, I.V., Díaz, S., and Arias, A. González, Phys. Status Solidi A 221 (1993).CrossRefGoogle Scholar
Arias, A. González, Cueto, A. Del, Muñoz, J.M., and Francisco, C. De, Mater. Lett. 37, 187 (1998).CrossRefGoogle Scholar
Ridgley, D.H., Lessoff, H., and Childress, J.D., J. Am. Ceram. Soc. 53, 6, 304 (1970).CrossRefGoogle Scholar
Flores, C., Arias, A. González, Raposo, V., Torres, L., Iñiguez, J., and Francisco, C. De, J. Magn. Magn. Mater. 226–230, 14321434 (2001).Google Scholar
5. Deeppik, K., Sumitra, P., Baijal, J.S., Prom, K., and Chandra, P., J. Phys. C: Solid State Phys. 21, 6169 (1988).Google Scholar
Kulshreshtha, K.S., J. Magn. Magn. Mater. 53, 345 (1986).CrossRefGoogle Scholar
Yousif, A.A., Elzain, M.E., Mazen, S.A., Sutherland, H., Abdala, H., and Masour, S.F., J. Phys.: Condens. Matter 6, 5717 (1994).Google Scholar
Wickman, H.H., Mössbauer Effects Methodology (Magnum Press, 1966), Vol. 2, p. 34.Google Scholar
ICC Standard No. 596, 5th ed. (International Electrotechnical Commission, Geneva, Switzerland, 1980).Google Scholar
Gonser, U., Mössbauer Spectroscopy (Springer-Verlag, Berlin and Heidelberg, Germany, New York, 1975), p. 69.CrossRefGoogle Scholar
Artherton, N.M., Electron Spin Resonance, Theory and Practice (John Wiley, New York, 1994).Google Scholar
Weil, J.A., Bolton, J.R., and Wertz, E., Electron Spin Resonance, 2nd ed. (John Wiley, New York, 1994).Google Scholar
Jan, S., Gerhard, W., Jan, V., Dillon, J.F. Jr., Weiss, S., Mallison, J.C., and Middelhoek, S., Magnetic Properties of Materials (McGraw-Hill, New York, 1971), p. 9.Google Scholar
Wolf, W.P., Phys. Rev. 108, 1152 (1957).CrossRefGoogle Scholar