Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T06:52:05.778Z Has data issue: false hasContentIssue false

Fe2O3–SnO2–graphene films as flexible and binder-free anode materials for lithium-ion batteries

Published online by Cambridge University Press:  29 September 2015

Feini Lin
Affiliation:
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
Hui Wang*
Affiliation:
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
*
a)Address all correspondence to this author. e-mail: huiwang@nwu.edu.cn
Get access

Abstract

A flexible Fe2O3–SnO2–graphene (GNs) film material was synthesized based on a method of physical blending. The product is characterized by x-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and x-ray photoelectron spectroscopy. The results show that the Fe2O3–SnO2 particles are uniformly distributed among GN layers, and the film can be used as working electrode directly without any binder or conductor. The binder-free Fe2O3–SnO2–GNs film shows high charge capacity and good cycling life both in half and full cells. The Fe2O3–SnO2–GNs film delivers an initial discharge capacity of 946 mA h g−1 at 100 mA g−1 and maintains a capacity of 538 mA h g−1 after 90 cycles in half cell. For full cell, the film also exhibits a high capacity of 334 mA h g−1 at 100 mA g−1 after 30 cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).CrossRefGoogle ScholarPubMed
Armand, M. and Tarascon, J.M.: Building better batteries. Nature 451, 652 (2008).Google Scholar
Etacheri, V., Marom, R., Elazari, R., Salitra, G., and Aurbach, D.: Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 4, 3243 (2011).CrossRefGoogle Scholar
Cao, K.Z., Jiao, L.F., Liu, Y.C., Liu, H.Q., Wang, Y.J., and Yuan, H.T.: Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Adv. Funct. Mater. 25, 1082 (2015).Google Scholar
Reddy, A.L.M., Shanjumon, M.M., Gowda, S.R., and Ajayan, P.M.: Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano lett. 9, 1002 (2009).Google Scholar
Ji, L., Toprakci, O., Alcoutlabi, M., Yao, Y., Li, Y., Zhang, S., Guo, B., Lin, Z., and Zhang, X.: α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. ASC Appl. Mater. Interfaces. 4, 2672 (2012).Google Scholar
Reddy, M.V., Yu, T., Sow, C.H., Shen, Z.X., Lim, C.T., Subba Rao, G.V., and Chowdari, B.V.R.: α-Fe2O3 Nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 17, 2792 (2007).CrossRefGoogle Scholar
Yu, W.J., Hou, P.X., Zhang, L.L., Li, F., Liu, C., and Cheng, H.M.: Preparation and electrochemical property of Fe2O3 nanoparticles-filled carbon nanotubes. Chem. Commun. 46, 8576 (2010).Google Scholar
Zhao, Y., Li, J., Ding, Y., and Guan, L.: Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries. Chem. Commun. 47, 7416 (2011).CrossRefGoogle ScholarPubMed
Ren, J.G., Yang, J.B., Abouimrane, A., Wang, D.P., and Amine, K.: SnO2 nanocrystals deposited on multiwalled carbon nanotubes with superior stability as anode material for Li-ion batteries. J. Power Sources 196, 8701 (2011).Google Scholar
Zhou, W.W., Cheng, C.W., Liu, J.P., Tay, Y.Y., Jiang, J., Jia, X.T., Zhang, J.X., Gong, H., Hng, H.H., Yu, T., and Fan, H.J.: Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 21, 2439 (2011).Google Scholar
Zhang, W.M., Wu, X.L., Hu, J.S., Guo, Y.G., and Wan, L.J.: Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 18, 3941 (2008).Google Scholar
Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., and Tarascon, J.M.: Nano-sized transition-metal oxide as negative-electrode materials for lithium-ion batteries. Nature. 407, 496 (2000).Google Scholar
Wu, H.B., Chen, J.S., Hng, H.H., and Lou, X.W.: Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale. 4, 2526 (2012).Google Scholar
Chen, R.J., Zhao, T., Wu, W.P., Wu, F., Li, L., Qian, J., Xu, R., Wu, H.M., Albishri, H.M., Al-Bogami, A.S., El-Hady, D.A., Lu, J., and Amine, K.: Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano lett. 14, 5899 (2014).Google Scholar
Yuan, F.W., Yang, H.J., and Tuan, H.Y.: Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: The role of chemical surface functionalization. ACS Nano 6, 9932 (2012).Google Scholar
Chen, J.S., Cheah, Y.L., Chen, Y.T., Jayaprakash, N., Madhavi, S., Yang, Y.H., and Lou, X.W.: SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. J. Phys. Chem., C 113, 20504 (2009).Google Scholar
Jia, X.L., Cheng, Y.H., Lu, Y.F., and Wei, F.: Building robust carbon nanotube-interweaved-nanocrystal architecture for high-performance anode materials. ACS Nano 8, 9265 (2014).CrossRefGoogle ScholarPubMed
Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007).Google Scholar
Kim, H.J., Huang, X.K., Guo, X.R., Wen, Z.H., Cui, S.M., and Chen, J.H.: Novel hybrid carbon nanofiber/highly branched graphene nanosheet for anode materials in lithium-ion batteries. ACS Appl. Mater. Interfaces. 6, 18590 (2014).CrossRefGoogle ScholarPubMed
He, C.N., Wu, S., Zhao, N.Q., Shi, C.S., Liu, E.Z., and Li, J.J.: Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7, 4459 (2013).CrossRefGoogle ScholarPubMed
Li, T., Wang, Y.Y., Tang, R., Qi, Y.X., Lun, N., Bai, Y.J., and Fan, R.H.: Carbon-coated Fe-Mn-O composites as promising anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 9470 (2013).Google Scholar
Xiao, L., Wu, D.Q., Sheng, H., Huang, Y.S., Li, S., He, M.Z., Zhang, F., and Feng, X.L.: Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Appl. Mater. Interfaces. 5, 3764 (2013).Google Scholar
Yuan, T.Z., Jiang, Y.Z., Li, Y., Zhang, D., and Yan, M.: Enhanced lithium storage performance in three-dimensional porous SnO2-Fe2O3 composite anode films. Electrochim. Acta. 136, 27 (2014).CrossRefGoogle Scholar
Xia, G.F., Li, N., Li, D.Y., Liu, R.Q., Wang, C., Li, Q., , X.J., Spendelow, J.S., Zhang, J.L., and Wu, G.L.: Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries. ACS Appl. Mater. Interfaces 5, 8607 (2013).Google Scholar
Wang, W., Ruiz, I., Guo, S., Favors, Z.C., Bay, H.H., Ozkan, M., and Ozkan, C.S.: Hybrid carbon nanotube and graphene nanostructures for lithium ion battery anodes. Nano Energy 3, 113 (2014).CrossRefGoogle Scholar
Wan, L.J., Ren, Z.Y., Wang, H., Wang, G., Tong, X., Gao, S.H., and Bai, J.T.: Graphene nanosheets based on controlled exfoliation process for enhanced lithium storage in lithium-ion battery. Diamond Relat. Mater. 20, 756 (2011).Google Scholar
Su, X.Q., Wang, G., Li, W.L., Bai, J.B., and Wang, H.: A simple method for preparing graphene nano-sheets at low temperature. Adv. Powder. Technol. 24, 317 (2013).Google Scholar
Niu, M.T., Huang, F., Cui, L.F., Huang, P., Yu, Y.L., and Wang, Y.S.: Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/alpha-Fe2O3 semiconductor nanoheterostructures. ACS Nano 2, 681 (2010).Google Scholar
Zhang, D.F., Sun, L.D., Jia, C.J., Yan, Z.G., You, L.P., and Yan, C.H.: Hierarchical assembly of SnO2 nanorod arrays on Fe2O3 nanotubes: A case of interfacial lattice compatibility. J. Am. Chem. Soc. 127, 13492 (2005).Google Scholar
Kim, S.Y., Hong, J., Kavian, R., Lee, S.W., Hyder, M.N., Horn, Y.S., and Hammond, P.T.: Rapid fabrication of thick spray-layer-by-layer carbon nanotube electrodes for high power and energy devices. Energy Environ. Sci. 6, 888 (2013).CrossRefGoogle Scholar
Qu, J., Yin, Y.X., Wang, Y.Q., Yan, Y., Guo, Y.G., and Song, W.G.: Layer structured α-Fe2O3 nanodisk/reduced graphene oxide composites as high-performance anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 3932 (2013).Google Scholar
Lei, D.N., Zhang, M., Qu, B.H., Chen, L.B., Wang, Y.G., Zhang, E., Xu, Z., Li, Q.H., and Wang, T.H.: α-Fe2O3 nanowall arrays: hydrothermal preparation, growth mechanism and excellent rate performances for lithium ion batteries. Nanoscale 4, 3422 (2012).Google Scholar
Pradhan, G.K., Reddy, K.H., and Parida, K.M.: Facile fabrication of mesoporous α-Fe2O3/SnO2 nanoheterostructure for photocatalytic degradation of malachite green. Catal. Today 224, 171 (2014).CrossRefGoogle Scholar
Wang, B.B., Wang, G., Zheng, Z.Z., Wang, H., Bai, J.T., and Bai, J.B.: Carbon coated Fe3O4 hybrid material prepared by chemical vapor deposition for high performance lithium-ion batteries. J. Electrochim. Acta. 106, 235 (2013).Google Scholar
Zou, Y.Q., Kan, J., and Wang, Y.: Fe2O3-graphene rice-on-sheet nanocomposite for high and fast lithium ion storage. J. Phys. Chem., C 115, 20747 (2011).Google Scholar
Wu, Z.S., Ren, W.C., Wen, L., Gao, L.B., Zhao, J.P., Chen, Z.P., Zhou, G.M., Li, F., and Cheng, H.M.: Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4, 3187 (2010).CrossRefGoogle ScholarPubMed
Mohamedi, M., Lee, S.J., Takahashi, D., Nishizawa, M., and Itoh, T.: Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries. Electrochim. Acta 46, 1161 (2001).CrossRefGoogle Scholar
Cakan, R.D., Hu, Y.S., Antonietti, M., Maier, J., and Titirici, M.M.: Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem. Mater. 20, 1227 (2008).Google Scholar
Lin, J., Peng, Z., Xiang, C., Ruan, G., Yan, Z., Natelson, D., and Tour, J.M.: Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7, 6001 (2013).Google Scholar
Guo, Q., Zheng, Z., Gao, H., Ma, J., and Qin, X.: SnO2/graphene composite as highly reversible anode materials for lithium ion batteries. J. Power Sources 240, 149 (2013).Google Scholar
Seo, S.D., Lee, D.H., Kim, J.C., Lee, G.H., and Kim, D.W.: Room-temperature synthesis of CuO/graphene nanocomposite electrodes for high lithium storage capacity. Ceram. Int. 39, 1749 (2013).CrossRefGoogle Scholar
Xiang, J.Y., Tu, J.P., Qiao, Y.Q., Wang, X.L., Zhong, J., Zhang, D., and Gu, C.D.: Electrochemical impedance analysis of a hierarchical CuO electrode composed of self-assembled nanoplates. J. Phys. Chem., C 115, 2505 (2011).CrossRefGoogle Scholar
Xu, M.W., Wang, F., Ding, B.J., Song, X.P., and Fang, J.X.: Electrochemical synthesis of leaf-like CuO mesocrystals and their lithium storage properties. RSC. Adv. 2, 2240 (2012).Google Scholar
Kim, J.G., Nam, S.H., HO Lee, S.H., Choi, S.M., and Kim, W.B.: SnO2 nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage. ACS Appl. Mater. Interface. 3, 828 (2011).Google Scholar
Xu, C.H., Sun, J., and Gao, L.: Synthesis of multiwalled carbon nanotubes that are both filled and coated by SnO2 nanoparticles and their high performance in lithium-ion batteries. J. Phys. Chem., C 113, 20509 (2009).Google Scholar
Hany, E.S., Anne, S.S., Manuel, N., Thomas, L., and Jürgen, J.: FeOx-coated SnO2 as an anode material for lithium ion batteries. J. Phys. Chem., C. 118, 8818 (2014).Google Scholar
Wu, P., Du, N., Zhang, H., Zhai, C.X., and Yang, D.R.: Self-templating synthesis of SnO2-carbon hybrid hollow spheres for superior reversible lithium ion storage. ACS Appl. Mater. Interfaces. 3, 1946 (2011).Google Scholar
Rahman, M.M., Wang, J.Z., Hassan, M.F., Wexler, D., and Liu, H.K.: Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12-TiO2: A nanocomposite anode material for Li-ion batteries. Adv. Energy Mater. 1, 212 (2011).Google Scholar
Choi, S.H., Ko, Y.N., Lee, J.K., and Kang, Y.C.: 3D MoS2–graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 25, 1780 (2015).CrossRefGoogle Scholar