Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T19:25:51.095Z Has data issue: false hasContentIssue false

FePt grains for magnetic storage on layer of self-assembled silica nanoparticles

Published online by Cambridge University Press:  01 January 2011

Kenta Mizusawa*
Affiliation:
Graduate School of Nihon University, 7-24-1 Narashino-dai Funabashi, Chiba 274-8501, Japan
Arata Tsukamono
Affiliation:
College of Science and Technology, Nihon University, 7-24-1 Narashino-dai Funabashi, Chiba 274-8501, Japan
Akiyoshi Itoh
Affiliation:
College of Science and Technology, Nihon University, 7-24-1 Narashino-dai Funabashi, Chiba 274-8501, Japan
*
a)Address all correspondence to this author. e-mail: kenta_mizusawa@inl.ecs.cst.nihon-u.ac.jp
Get access

Abstract

Small FePt grain size is one of the candidates for ultrahigh density magnetic recording material. We investigate increasing grain density of FePt grains fabricated on nanostructured substrates. One of them is nanodent-array (NDA) (period = 14 nm), and another is self-assembled silica nanoparticles (SASP) (period = 18 nm). In this paper, the influence of difference in nanostructured substrates on grain density Np is investigated in detail. FePt films were fabricated by sputtering and rapid thermal annealing (RTA) [Y. Itoh, T. Aoyagi, A. Tsukamoto, K. Nakagawa, A. Itoh, and T. Katayama, Jpn. J. Appl. Phys.43(12), 8040 (2004)]. FePt grains on those substrates show almost the same areal density; however, experimental results show that FePt grains on SASP has the largest Np while the initial film thicknesses are the same. Electron diffraction measurements indicate the existence of ordered FePt crystalline. The magnetic hysteresis loops are also shown.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Trichy, G.R., Chakraborti, D., Narayan, J., and Prater, J.T.: Structure-magnetic property correlations in the epitaxial FePt system. Appl. Phys. Lett. 92, 102504 (2008).CrossRefGoogle Scholar
2.Albrecht, M., Hu, G., Guhr, I.L., Ulbrich, T., Boneberg, J., Leiderer, P., and Schatz, G.: Magnetic multilayers on nanospheres. Nat. Mater. 4, 203 (2005).CrossRefGoogle ScholarPubMed
3.Kappenberger, P., Luo, F., Heyderman, L.J., Solak, H.H., Padeste, C., Brombacher, C., Makarov, D., Ashworth, T.V., Philippe, L., Hug, H.J., and Albrecht, M.: Template-directed self-assembled magnetic nanostructures for probe recording. Appl. Phys. Lett. 95, 023116 (2009).CrossRefGoogle Scholar
4.Itoh, Y., Aoyagi, T., Tsukamoto, A., Nakagawa, K., Itoh, A., and Katayama, T.: Structural and magnetization properties of island FePt produced by rapid thermal annealing. Jpn. J. Appl. Phys. 43(12), 8040 (2004).CrossRefGoogle Scholar
5.Itoh, A. and Tsukamoto, A.: High magnetic recording media on FePt grains and self-assembled nano-structured layers. J. Magn. Soc. Jpn. 33, 507 (2009).CrossRefGoogle Scholar
6.Itoh, A., Itoh, Y., Nanba, K., Adachi, Y., Motohashi, M., and Tsukamoto, A.: Cu doping effect on FePt grains prepared by rapid thermal annealing on SiO2 substrate and wall structure in TbFeCo/FePt CGC-like film. J. Appl. Phys. 99, 08Q906 (2006).CrossRefGoogle Scholar
7.Weller, D., Moser, A., Folks, L., Best, M.E., Lee, W., Toney, M.F., Schwickert, M., Thiele, J.U., and Doerner, M.F.: High Ku materials approach to 100 Gbits/in2. IEEE Trans. Magn. 36, 10 (2000).CrossRefGoogle Scholar
8.Klemmer, T., Hoydick, D., Okumura, H., Zhang, B., and Soffa, W.A.: Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets. Scr. Metall. Mater. 33(10–11), 1793 (1995).CrossRefGoogle Scholar