Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T14:27:59.524Z Has data issue: false hasContentIssue false

Ferroelectric and Dielectric Properties of Strontium Bismuth Niobate Vanadates

Published online by Cambridge University Press:  31 January 2011

Yun Wu
Affiliation:
Materials Science and Engineering, University of Washington, Seattle, Washington 98195
Guozhong Cao*
Affiliation:
Materials Science and Engineering, University of Washington, Seattle, Washington 98195
*
a)Address all correspondence to this author. e-mail: gzcao@u.washington.edu
Get access

Abstract

Strontium bismuth niobate vanadates, SrBi2 (VxNb1-x)2O9 (with 0 ≤ x ≤ 0.1), were prepared by reaction sintering of powder mixtures of constituent oxides. With partial substitution of niobium by vanadium cations (up to 10 at.%), the single-phase layered perovskite structure was preserved, and the sintering temperature of the system was significantly lowered (∼200 °C). The incorporation of vanadium into the layered perovskite structure resulted in a shift of the Curie point to higher temperatures from 435 to 457 °C, with 10 at.% vanadium doping, and an increase in dielectric constant from ∼700 to ∼1100, with 10 at.% vanadium doping, at their respective Curie points. The remanent polarization increased from ∼2.4 to ∼8 µC/cm2, while the coercive field decreased from ∼63 to ∼45 kV/cm with 10 at.% V5+ doping.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, United Kingdom, 1977).Google Scholar
2.Ferroelectric Thin Films VI, edited by Treece, R.E., Jones, R.E., Foster, C.M., Desu, S.B., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 493, Warrendale, PA, 1998).Google Scholar
3.Scott, J.F. and de Araujo, C.A., Science 246, 1400 (1989).CrossRefGoogle Scholar
4.Jones, R.E. Jr, Maniar, P.D., Moazzami, R., Zurcher, P., Witowski, J.Z., Lii, Y.T., Chu, P., and Gillespie, S.J., Thin Solid Films 270, 584 (1995).CrossRefGoogle Scholar
5.Cao, G.Z., in Advances in Materials Science & Applications, edited by Shi, D.L. (Tsinghua University Press, Beijing, China, in press).Google Scholar
6.Ahn, C.H., Hammond, R.H., Geballe, T.H., Beasley, M.R., Triscone, J.M., Decroux, M., Fischer, O., Antognazza, L., and Char, K., Appl. Phys. Lett. 70, 206 (1997).CrossRefGoogle Scholar
7.Tuttle, B.A., in Thin Film Ferroelectric Materials and Devices, edited by Ramesh, R. (Kluwer, Norwell, MA, 1998), p. 145.Google Scholar
8.Shimizu, M., Fujisawa, H., and Shiosaki, T., Microelectron. Eng. 29, 173 (1995).CrossRefGoogle Scholar
9.Watanabe, H., Mihara, T., Yoshimori, H., and Paz de Araujo, C.A., Jpn. J. Appl. Phys. 34, 5240 (1995).CrossRefGoogle Scholar
10.Scott, J.F., Ross, F.M., Paz de Araujo, C.A., Scott, M.C., and Huffman, M., Mater. Res. Bull. 21, 33 (1996).CrossRefGoogle Scholar
11.de Araujo, C.A., Cuchlaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F., Nature 374, 627 (1995).CrossRefGoogle Scholar
12.Scott, J.F., in Thin Film Ferroelectric Materials and Devices, edited by Ramesh, R. (Kluwer, Norwell, MA, 1997), p. 115.CrossRefGoogle Scholar
13.Duran-Martin, P., Castro, A., Millan, P., and Jimenez, B., J. Mater. Res. 13, 2565 (1998).CrossRefGoogle Scholar
14.Torii, Y., Tato, K., Tsuzuki, A., Hwang, H.J., and Dey, S.K., J. Mater. Sci. Lett. 17, 827 (1998).CrossRefGoogle Scholar
15.Watanabe, H., Mihara, T., Yoshimori, H., and Araujo, C.A.P, Jpn. J. Appl. Phys. 34, 5240 (1995).CrossRefGoogle Scholar
16.Lu, C. and Wen, C., in Ferroelectric Thin Films VII, edited by Jones, R.E., Schwartz, R.W., Summerfelt, S.R., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 541, Warrendale, PA, 1999), p. 229.Google Scholar
17.Wu, Y. and Cao, G.Z., Appl. Phys. Lett. 75, 2650 (1999).CrossRefGoogle Scholar
18.Wu, Y. and Cao, G.Z., J. Mater. Sci. Lett. 19, 267 (2000).CrossRefGoogle Scholar
19.CRC Handbook of Chemistry and Physics, 61st ed., edited by Weast, R.C. and Astle, M.J. (CRC Press, Boca Raton, FL, 1974).Google Scholar
20.Shannon, R.D. and Prewitt, C.T., Acta Crystallogr. B 25, 925 (1969).CrossRefGoogle Scholar
21.Isupov, V.A., Inorg. Mater. 33, 936 (1997).Google Scholar
22.Cho, S., Yoon, H., Kim, D., Kim, T., and Hong, K., J. Am. Ceram. Soc. 81, 3038 (1998).CrossRefGoogle Scholar
23.Chen, T., Thio, C., and Desu, S.B., J. Mater. Res. 12, 2628 (1997).CrossRefGoogle Scholar
24.Singh, K., Bopardik, D.K., and Atkare, D.V., Ferroelectrics 82, 55 (1988).CrossRefGoogle Scholar
25.Subbarao, E.C., Integr. Ferroelectr. 12, 33 (1996).CrossRefGoogle Scholar
26.Kato, K., Zheng, C., Finder, J.M., and Dey, S.K., J. Am. Ceram. Soc. 81, 1869 (1998).CrossRefGoogle Scholar
27.Desu, S.B. and Vijay, D.P., Mater. Sci. Eng. B 32, 83 (1995).CrossRefGoogle Scholar
28.Desu, S.B. and Li, T., Mater. Sci. Eng. B 34, L4 (1995).CrossRefGoogle Scholar
29.Jona, F. and Shirane, G., Ferroelectric Crystals (Pergamon Press, New York, 1962).Google Scholar
30.Moulson, A.J. and Herbert, J.M., Electroceramics: Materials, Properties, Applications (Chapman & Hall, London, United Kingdom, 1990).Google Scholar
31.Varma, K.B.R and Prasad, K.V.R, J. Mater. Res. 11, 2288 (1996).CrossRefGoogle Scholar
32.Lee, Y., Wu, L., Liang, C., and Wu, T., Ferroelectrics 138, 11 (1993).CrossRefGoogle Scholar