Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-30T21:48:33.926Z Has data issue: false hasContentIssue false

Fibrous structures on diamond and carbon surfaces formed by hydrogen plasma under direct-current bias and field electron-emission properties

Published online by Cambridge University Press:  31 January 2011

Koji Kobashi
Affiliation:
Frontier Carbon Technology Project/Japan Fine Ceramics Center, c/o Kobe Steel, Ltd., 1–5-5 Takatsuka-dai, Nishi-ku, Kobe 651–2271, Japan
Takeshi Tachibana
Affiliation:
Frontier Carbon Technology Project/Japan Fine Ceramics Center, c/o Kobe Steel, Ltd., 1–5-5 Takatsuka-dai, Nishi-ku, Kobe 651–2271, Japan
Yoshihiro Yokota
Affiliation:
Frontier Carbon Technology Project/Japan Fine Ceramics Center, c/o Kobe Steel, Ltd., 1–5-5 Takatsuka-dai, Nishi-ku, Kobe 651–2271, Japan
Nobuyuki Kawakami
Affiliation:
Frontier Carbon Technology Project/Japan Fine Ceramics Center, c/o Kobe Steel, Ltd., 1–5-5 Takatsuka-dai, Nishi-ku, Kobe 651–2271, Japan
Kazushi Hayashi
Affiliation:
Frontier Carbon Technology Project/Japan Fine Ceramics Center, c/o Kobe Steel, Ltd., 1–5-5 Takatsuka-dai, Nishi-ku, Kobe 651–2271, Japan
Kazuhiro Yamamoto
Affiliation:
National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1–1-1 Higashi, Tsukuba 305–8565, Japan
Yoshinori Koga
Affiliation:
National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1–1-1 Higashi, Tsukuba 305–8565, Japan
Shuzo Fujiwara
Affiliation:
National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1–1-1 Higashi, Tsukuba 305–8565, Japan
Yasuhito Gotoh
Affiliation:
Department of Electronic Science and Engineering, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606–8501, Japan
Hironori Nakahara
Affiliation:
Department of Electronic Science and Engineering, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606–8501, Japan
Hiroshi Tsuji
Affiliation:
Department of Electronic Science and Engineering, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606–8501, Japan
Junzo Ishikawa
Affiliation:
Department of Electronic Science and Engineering, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606–8501, Japan
Franz A. Köck
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695–8202
Robert J. Nemanich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695–8202
Get access

Abstract

Polycrystalline diamond films, single crystal bulk diamonds, and diamond powder were treated in microwave plasma of hydrogen at 1.6 torr under a negative direct-current bias of −150 to −300 V without metal catalyst. It was found that fibrous structures, uniformly elongated along the direction normal to the specimen surface, were formed on the diamond surfaces. Similar experiments for glasslike carbon resulted in conical structures with frizzy fibers at the tops. Transmission electron microscopy measurements indicated that the fibers formed on diamond consisted of randomly oriented diamond nanocrystals with diameters of less than 10 nm, while the conical structures formed on glasslike carbon consisted of graphite nanocrystals. Field emission measurements of the fibrous specimens exhibited better emission efficiency than untreated ones. The field emission electron microscopy of the fibrous glasslike carbon showed a presence of discrete electron emission sites at a density of approximately 10,000 sites/cm2.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gomer, R., Field Emission and Field Ionization (American Institute of Physics, Woodbury, NY, 1993).Google Scholar
Baumann, P.K. and Nemanich, R.J., in Low-Pressure Synthetic Diamond-Manufacturing and Applications, edited by Dischler, B., Wild, C. (Springer and Verlag, Berlin, Germany, 1998), p. 281.CrossRefGoogle Scholar
Gröning, O., Küttel, O.M., Gröning, P., and Schlapbach, L., J. Vac. Sci. Technol. B 17, 1970 (1999).CrossRefGoogle Scholar
Swain, G.M., Anderson, A.B., and Angus, J.C., MRS Bull. 23, 56 (1998).CrossRefGoogle Scholar
Sarada, B.V., Rao, T.N., Tryk, D.A., and Fujishima, A., J. Electrochem. Soc. 146, 1469 (1999).CrossRefGoogle Scholar
Shiomi, H., Jpn. J. Appl. Phys. 36, 7745 (1997).CrossRefGoogle Scholar
Stoner, B.R., Tessmer, G.J., and Dreifus, D.L., Appl. Phys. Lett. 62, 1803 (1993).CrossRefGoogle Scholar
Zhang, W.J., Jiang, X., and Xia, Y.B., J. Appl. Phys. 82, 1896 (1997).CrossRefGoogle Scholar
Jiang, X., Zhang, W.J., and Klages, C.P., Phys. Rev. B 58, 7064 (1998).CrossRefGoogle Scholar
Yamamoto, H., Baba, K., Yoshimoto, M., and Takemura, H., in Proceedings of the New Diamond Symposium (New Diamond Forum, Tokyo, Japan, 1999), p. 216 (in Japanese).Google Scholar
Iijima, S., Nature (London) 56, 354 (1991).Google Scholar
Choi, Y.S., Kang, J.H., Park, Y.J., Choi, W.B., Lee, C.J., Jo, S.H., Lee, C.G., You, J.H., Jung, J.E., Lee, N.S., and Kim, J.M., Diamond Relat. Mater. 10, 1705 (2001).CrossRefGoogle Scholar
Lee, N.S., Chung, D.S., Han, I.T., Kang, J.H., Choi, Y.S., Kim, H.Y., Park, S.H., Jin, Y.W., Yi, W.K., Yun, M.J., Jung, J.E., Lee, C.J., You, J.H., Jo, S.H., Lee, C.G., and Kim, J.M., Diamond and Relat. Mater. 10, 265 (2001).CrossRefGoogle Scholar
Saito, Y. and Uemura, S., Carbon 38, 169 (2000).CrossRefGoogle Scholar
Saito, Y., Uemura, S., and Hamaguchi, K., Jpn. J. Appl. Phys. Part 2 37, L346 (1998).CrossRefGoogle Scholar
Dillon, A.C. and Heben, M.J., Appl. Phys. B 72, 133 (2001).CrossRefGoogle Scholar
Meregalli, V. and Parrinello, M., Appl. Phys. B 72, 143 (2001).CrossRefGoogle Scholar
Bunger, U. and Zittel, W., Appl. Phys. B 72, 147 (2001).CrossRefGoogle Scholar
Isihara, T., Fukunaga, A., Akiyoshi, R., Yoshio, M., and Takita, Y., Electrochemistry 68, 38 (2000).CrossRefGoogle Scholar
Sander, J.T., Alwin, R.M., and Verschueren, C.D., Nature 393, 49 (1998).Google Scholar
Shea, H.R., Martel, R., Hertel, T., Schmidt, T., and Ph. Avouris, Microelectron. Eng. 46, 101 (1999).CrossRefGoogle Scholar
Harris, P.J.F., Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century (Cambridge Univ. Press, New York, 1999).CrossRefGoogle Scholar
Science and Application of Nanotubes (Fundamental Materials Research), edited by Tomanek, D.R., Enbody, D. (Plenum, New York, 2000).Google Scholar
Küttel, O.M., Gröning, O., Emmenegger, C., and Schlapbach, L., Appl. Phys. Lett. 73, 2113 (1998).CrossRefGoogle Scholar
Kusunoki, M., Suzuki, T., Kaneko, K., and Ito, M., Philos. Mag. Lett. 79, 153 (1999).CrossRefGoogle Scholar
Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N., Science 282, 1105 (1998).CrossRefGoogle Scholar
Huang, Z.P., Xu, J.W., Ren, Z.F., Wang, J.H., Siegal, M.P., and Provencio, P.N., Appl. Phys. Lett. 73, 3845 (1998).CrossRefGoogle Scholar
Kobashi, K., Tachibana, T., Yokota, Y., Kawakami, N., Hayashi, K., and Inoue, K., Diamond Relat. Mater. 10, 2039 (2001).CrossRefGoogle Scholar
Kobashi, K. and Tachibana, T., Carbon 39, 303 (2001).CrossRefGoogle Scholar
Handbook of Industrial Diamonds and Diamond Films, edited by Prelas, M.A., Popovici, G., and Bigelow, L.K. (Dekker, Inc., New York, 1998).Google Scholar
Diamond, Electronic Properties and Applications, edited by Pan, L.S. and Kania, D.R. (Kluwer Academic, Boston, MA, 1995).CrossRefGoogle Scholar
Kobashi, K., Nishimura, K., Kawate, Y., and Horiuchi, T., Phys. Rev. B 38, 4067 (1988).CrossRefGoogle Scholar
Yugo, S., Kimura, T., and Muto, T., Vacuum 41, 1364 (1990);CrossRefGoogle Scholar
Yugo, S., Kanai, T., and Kimura, T., Diamond Relat. Mater. 1, 388 (1992).CrossRefGoogle Scholar
Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).CrossRefGoogle Scholar
Stoner, B.R. and Glass, J.T., Appl. Phys. Lett. 60, 698 (1992).CrossRefGoogle Scholar
Stoner, B.R., Ma, G-H., Wolter, S.D., Glass, J.T., Phys. Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
Wolter, S.D., Stoner, B.R., Glass, J.T., Ellis, P.J., Buhaenko, D.S., Jenkins, C.E., and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).CrossRefGoogle Scholar
Stoner, B.R., Sahaida, S., Bade, J.P., Southworth, P., Ellis, P.J., J. Mater. Res. 8, 1334 (1993).CrossRefGoogle Scholar
Tachibana, T., Hayashi, K., and Kobashi, K., in Advances in New Diamond Science and Technology, edited by Saito, S., Fujimori, N., Fukunaga, O., Kamo, M., Kobashi, K., and Yoshikawa, M. (MYU, Tokyo, Japan, 1994), p. 279.Google Scholar
Tachibana, T., Hayashi, T., and Kobashi, K., Appl. Phys. Lett. 68, 1491 (1996).CrossRefGoogle Scholar
Stöckel, R., Stammler, M., Janischowsky, K., Ley, L., Albrecht, M., and Strunk, H.P., J. App. Phys. 83, 531 (1998).CrossRefGoogle Scholar
Ando, Y., Tachibana, T., and Kobashi, K., Diamond Relat. Mater. 10, 312 (2001).CrossRefGoogle Scholar
Iwamura, E., in Proceedings of the 2nd International Conference on Processing Materials for Properties, edited by Mishra, B., Yamauchi, C. (The Minerals, Metals & Materials Soc., Warrendale, PA, 2000), p. 263; B. Window and G. L. Harding, J. Vac. Sci. Technol. A 8, 1277 (1990).Google Scholar
Gotoh, Y., Kondo, T., Nagao, M., Tsuji, H., Ishikawa, J., Hayashi, K., and Kobashi, K., J. Vac. Sci. Technol. B 18, 1018 (2000).CrossRefGoogle Scholar
Nemanich, R.J., English, S.L., Hartman, J.D., Sowers, A.T., Ward, B.L., Ade, H., Davis, R.F., Appl. Surf. Sci. 146, 287 (1999).CrossRefGoogle Scholar
Hartman, J.D., Naniwae, K., Petrich, C., Ramachandran, V., Feenstra, R.M., Nemanich, R.J., and Davis, R.F., Mater. Sci. Forum 338(I), 353 (2000).CrossRefGoogle Scholar
Köck, F.A.M., Garguilo, J.M., Brown, B., and Nemanich, R.J., in Electron-Emission Materials, Vacuum Microelectronics and Flat-Panel Displays, edited by Jensen, K.L., Nemanich, R.J., Holloway, P., Trottier, T., Mackie, W., Temple, D., and Hoh, J. (Mater. Res. Soc. Symp. Proc. 621, Warrendale, PA, 2000), p. R651Google Scholar
Rutledge, K.M. and Gleason, K.K., in Handbook of Industrial Diamonds and Diamond Films, edited by Prelas, M.A., Popovici, G., and Bigelow, L.K. (Dekker, Inc., New York, 1998), Chap. 9, p. 413.Google Scholar
Plano, L.S.G., in Diamond, Electronic Properties and Applications, edited by Pan, L.S., Kania, D.R. (Kluwer Academic, Boston, MA, 1995), Chap. 3, p. 61.CrossRefGoogle Scholar
Zhang, W., Zhang, F., Wu, Q., and Chen, G., Mater. Lett. 15, 292 (1992).Google Scholar
McNamara, K.M., Williams, B.E., Gleason, K.K., and Scruggs, B.E., J. Appl. Phys. 76, 2466 (1994).CrossRefGoogle Scholar
Dischler, B., Wild, C., Muller-Sebert, W., Koidl, P., Physica B 185, 217 (1993).CrossRefGoogle Scholar
Hayashi, K., Yamanaka, S., Okushi, H., and Kajimura, K., Diamond Relat. Mater. 5, 1002 (1996).CrossRefGoogle Scholar
Kawarada, H., Surf. Sci. Rep. 26, 205 (1996).CrossRefGoogle Scholar
Hayashi, K., Yamanaka, S., Okushi, H., and Kajimura, K., Appl. Phys. Lett. 68, 376 (1996).CrossRefGoogle Scholar
Mori, Y., Mori, E., Hatta, A., Ito, T., and Hiraki, A., Jpn. J. Appl. Phys. Part 2 31, L1720 (1992).Google Scholar
Landstrass, M.I. and Ravi, K.V., Appl. Phys. Lett. 55, 975 (1989); Appl. Phys. Lett. 55, 1391 (1989).CrossRefGoogle Scholar
Grot, S.A., Gildenblat, G.S., Hatfield, C.W., Wronski, C.R., Badzian, A.R., Badzian, T., Messier, R., IEEE Electron Device Lett. 11, 100 (1990).CrossRefGoogle Scholar
Maki, T., Shikama, S., Komori, M., Sakaguchi, Y., Sakuta, K., and Kobayashi, T., Jpn. J. Appl. Phys. Part 2 31, L1446 (1992).CrossRefGoogle Scholar
Mori, Y., Show, Y., Deguchi, M., Yagi, H., Yagyu, H., Eimori, N., Okada, T., Hatta, A., Nishinura, K., Kitabatake, M., Ito, T., Hirao, T., Izumi, T., Sasski, T., and Hiraki, A., Jpn. J. Appl. Phys. 32, L987 (1993).CrossRefGoogle Scholar
Albin, S. and Watkins, L., Appl. Phys. Lett. 56, 1454 (1990).CrossRefGoogle Scholar
Hayashi, K., Yamanaka, S., Watanabe, H., Sekiguchi, T., Okushi, H., and Kajimura, K., J. Appl. Phys. 81, 744 (1997).CrossRefGoogle Scholar
Nemanich, R.J., Bergman, L., LeGrice, Y.M., Turner, K.F., Humphreys, T.P., Proc. SPIE 1437, 2 (1991).CrossRefGoogle Scholar
Ando, Y., Nishibayashi, Y., and Kobashi, K., Diamond Relat. Mater. 10, 606 (2001).CrossRefGoogle Scholar
Sowers, A.T., Ward, B.L., English, S.L., and Nemanich, R.J., J. Appl. Phys. 86, 3973 (1999).CrossRefGoogle Scholar
Chen, Q. and Swain, G.M., Langmuir 14, 7017 (1998).CrossRefGoogle Scholar
Gicquel, A., in Handbook of Industrial Diamonds and Diamond Films, edited by Prelas, M.A., Popovici, G., and Bigelow, L.K. (Dekker, New York, 1998), p. 583.Google Scholar
Lieberman, M.A. and Lichtenberg, A.J., Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994).Google Scholar
Trong, Y-T., Hsieh, H-C., and Chen, C-F., Diamond Relat. Mater. 8, 772 (1999).Google Scholar
Küttel, O.M., Diederich, L., Schaller, E., Carnal, O., and Schlapbach, L., Surf. Sci. 337, L812 (1995).CrossRefGoogle Scholar
Rawles, R.E., Komarov, S.F., Gat, R., Morris, W.G., Hudson, J.B., D’Evelyn, M.P., Diamond Relat. Mater. 6, 791 (1997).CrossRefGoogle Scholar
Cheng, C-L., Chang, H-C., Lin, J-C., Song, K-J., and Wang, J-K., Phys. Rev. Lett. 78, 3713 (1997).CrossRefGoogle Scholar
Mercer, T.W., Russel, J.N., Jr., and Pehrsson, P.E., Surf. Sci. 392, L21 (1997).CrossRefGoogle Scholar
Hayashi, K., Yamanaka, S., Ohkushi, H., and Kajimura, K., Diamond Relat. Mater. 5, 1002 (1996).CrossRefGoogle Scholar
Hayashi, K., Yamanaka, S., Watanabe, H., Sekiguchi, T., Ohkushi, H., and Kajimura, K., Appl. Surf. Sci. 125, 120 (1998).CrossRefGoogle Scholar
Koslowski, B., Strobel, S., Wenig, M.J., and Ziemann, P., Appl. Phys. A 66, S1159 (1998).CrossRefGoogle Scholar
Koslowski, B., Strobel, S., Wenig, M.J., Martschat, R., Ziemann, P., Diamond Relat. Mater. 7, 322 (1998).CrossRefGoogle Scholar
Guo, Y.P., Lam, K.L., Lui, K.M., Kwok, R.W.M., and Hui, K.C., J. Mater. Res. 13, 2315 (1998).CrossRefGoogle Scholar
Hata, C., Kamo, M., and Sato, Y., New Diamond (MYU, Tokyo, 1989), No. 5, p. 12 (in Japanese).Google Scholar
Uchida, N., Kurita, T., Uematsu, K., and Saito, K., J. Mater. Sci. Lett. 9, 249 (1990); N. Uchida, T. Kurita, H. Ohkushi, K. Uematsu, and K. Saito, J. Cryst. Growth 114, 565 (1991).CrossRefGoogle Scholar
Chu, C.J., Pan, C., Margrave, J.L., and Hauge, R.H., Diamond Relat. Mater. 4, 1317 (1995).CrossRefGoogle Scholar
Taniguchi, J., Miyamoto, I., Ohno, N., and Honda, S., Jpn. J. Appl. Phys. 35, 6574 (1996); S. Kiyohara and I. Miyamoto, Nanotechnology 7, 270 (1996).CrossRefGoogle Scholar
Kiyoyama, S., Miyamoto, I., Kitazawa, K., and Honda, S., Nucl. Instrum. Methods Phys. Res. Sect. B 121, 510 (1997).Google Scholar
Ramesham, R. and Loo, B.H., J. Electrochem. Soc. 139, 1988 (1992).CrossRefGoogle Scholar
Ramesham, R., Welch, W., Neely, W.C., Rose, M.F., and Askew, R.F., Thin Solid Films 304, 245 (1997).CrossRefGoogle Scholar