Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T01:46:15.007Z Has data issue: false hasContentIssue false

First-principles investigation on environmental embrittlement of TiAl

Published online by Cambridge University Press:  31 January 2011

Y. Liu
Affiliation:
State Key Laboratory of Rapidly Solidified Nonequilibrium Alloys, Institute of Metal Research, Academia Sinica, Shenyang 110015, People's Republic of China
K. Y.
Affiliation:
State Key Laboratory of Rapidly Solidified Nonequilibrium Alloys, Institute of Metal Research, Academia Sinica, Shenyang 110015, People's Republic of China
J. H. Zhang
Affiliation:
State Key Laboratory of Rapidly Solidified Nonequilibrium Alloys, Institute of Metal Research, Academia Sinica, Shenyang 110015, People's Republic of China
G. Lu
Affiliation:
State Key Laboratory of Rapidly Solidified Nonequilibrium Alloys, Institute of Metal Research, Academia Sinica, Shenyang 110015, People's Republic of China
Z. Q. Hu
Affiliation:
State Key Laboratory of Rapidly Solidified Nonequilibrium Alloys, Institute of Metal Research, Academia Sinica, Shenyang 110015, People's Republic of China
Get access

Extract

To investigate the hydrogen embrittlement and Mn ductilization effects in TiAl, the electronic structures of pure, H-doped, Mn-doped, and Mn, H-codoped TiAl have been studied by the first-principles discrete variational Xa calculations. Local environmental total bond order (LTBO), which is developed for the description of the cohesive properties in a local atom environment involving impurities, should be regarded as a new microscopic criterion for embrittlement. The larger LTBO presents the stronger cohesion and the better ductility of the system. Our results show that H obviously decreases LTBO while Mn increases it, which suggests H as an embrittler while Mn as a ductilizer. It is of key importance to understand hydrogen embrittlement in which hydrogen causes the weakening of its surrounding metal-metal bonds.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Huang, S.C. and Chesnutt, J. C., in Intermetallic Compounds, edited by Westbrook, J.H. and Fleischer, R. L. (Wiley, New York, 1994), Vol. 2, p. 73.Google Scholar
2.Kawabata, T., Kanai, T., and Izumi, O., Acta Metall. 33, 1355 (1985).CrossRefGoogle Scholar
3.Hug, G., Loiseau, A., and Lasalmonie, A., Philos. Mag. A 54, 47 (1986).CrossRefGoogle Scholar
4.Hug, G., Loiseau, A., and Veyssière, P., Philos. Mag. A 57, 499 (1988).CrossRefGoogle Scholar
5.Hug, G. and Veyssière, P., in Int. Symp. on ElectronicMicroscopy in Plasticity and Fracture Research of Materials (Dresden, October 1989).Google Scholar
6.Court, S.A., Vasudevan, V.K., and Fraser, H. L., Philos. Mag. A 61, 141 (1990).CrossRefGoogle Scholar
7.Greenberg, B.A. and Gornostirev, Yu. N., Scripta Metall. 22, 853 (1988).CrossRefGoogle Scholar
8.Greenberg, B.A., Anisimov, V. I., Gornostirev, Yu.N., and Taluts, G.G., Scripta Metall. 22, 859 (1988).CrossRefGoogle Scholar
9.Anisimov, V. I., Ganin, G.V., Galakhov, V. R., and Kurmayev, E. Z., Phys. Met. Metall. 63, 192 (1987).Google Scholar
10.Chubb, S.R., Papaconstantopoulous, D.A., and Klein, B.M., Phys. Rev. B 38, 12120 (1988).CrossRefGoogle Scholar
11.Morinaga, M., Saito, J., Yukawa, N., and Adachi, H., Acta Metall. 38, 25 (1990).CrossRefGoogle Scholar
12.Fu, C. L. and Yoo, M.H., Philos. Mag. Lett. 62, 159 (1990).CrossRefGoogle Scholar
13.Woodward, C., MacLaren, J.M., and Rao, S., J. Mater. Res. 7, 1735 (1992).CrossRefGoogle Scholar
14.Song, Y., Tang, S. P., Xu, J.H., Mryasov, O.N., Freeman, A. J., Woodward, C., and Dimiduk, D.M., Philos. Mag. B 70, 987 (1994).CrossRefGoogle Scholar
15.Nakamura, M., Hashimoto, K., and Tsujimoto, T., J. Mater. Res. 8, 68 (1993).CrossRefGoogle Scholar
16.Averill, F.W. and Ellis, D. E., J. Chem. Phys. 59, 6412 (1973).CrossRefGoogle Scholar
17.Ellis, D. E., Benesh, G.A., and Byrom, E., Phys. Rev. B 20, 1198 (1979).CrossRefGoogle Scholar
18.Delley, B., Ellis, D. E., and Freeman, A. J., Phys. Rev. B 27, 2132 (1983).CrossRefGoogle Scholar
19.Press, M.R. and Ellis, D. E., Phys. Rev. B 35, 4438 (1987).CrossRefGoogle Scholar
20.von Barth, U. and Hedin, L., J. Phys. C 5, 1629 (1972).CrossRefGoogle Scholar
21.Mulliken, R. S., J. Chem. Phys. 23, 1833, 1841, 2338, and 2343 (1955).Google Scholar
22.Brandes, E.A. (editor), Smithells Metals Reference Book, 6th ed., edited by Brandes, E.A. (Butterworths, London, 1983).Google Scholar
23.Huang, S.C. and Hall, E. L., Metall. Trans. 22A, 2619 (1991).CrossRefGoogle Scholar
24.Huang, S.C. and Hall, E. L., Acta Metall. Mater. 39, 1053 (1991).CrossRefGoogle Scholar
25.Jund, P., Zhong, W., and Tomanek, D., Phys. Rev. B 51, 9569 (1995).CrossRefGoogle Scholar
26.Eberhart, M. E., Latanision, R.M., and Johnson, K.H., Acta Metall. 33, 1769 (1985).CrossRefGoogle Scholar
27.Eberhart, M. E., Johnson, K.H., Messmer, R. P., and Briant, C. L., Atomistics of Fracture, edited by Latanision, R.M. and Pickens, J. R. (Plenum, New York, 1983), p. 255.CrossRefGoogle Scholar
28.Liu, Y., Chen, K.Y., Zhang, J.H., Hu, Z.Q., Lu, G., and Kioussis, N., J. Phys.: Condens. Matter 9, 9829 (1997).Google Scholar
29.Stoloff, N. S. and Johnston, T. L., Acta Metall. 11, 251 (1963)CrossRefGoogle Scholar
30.Westwood, A.R.C., Preece, C.M., and Kamdar, M.H., Trans. ASM 60, 723 (1967).Google Scholar
31.Westwood, A.R.C. and Kamdar, M.H., Philos. Mag. 8, 804 (1963).CrossRefGoogle Scholar
32.Lynch, S. P., J. Mater. Sci. 21, 692 (1986).CrossRefGoogle Scholar
33.Beachem, C.D., Metall. Trans. 3, 437 (1972).CrossRefGoogle Scholar
34.Tabata, T. and Birnbaum, H.K., Scripta Metall. 18, 231 (1984).CrossRefGoogle Scholar
35.Bond, G.M., Robertson, I.M., and Birnbaum, H.K., Acta Metall 35, 2289 (1987).CrossRefGoogle Scholar
36.Vogelsang, L.B. and Schijve, J., Fat. Engine. Mater. Struct. 3, 85 (1980).CrossRefGoogle Scholar
37.Briant, C. L. and Messmer, R. P., Philos. Mag. B 42, 569 (1980).CrossRefGoogle Scholar
38.Messmer, R. P. and Briant, C. L., Acta Metall. 30, 457 (1982).CrossRefGoogle Scholar
39.Briant, C. L. and Messmer, R. P., Acta Metall. 30, 1811 (1982).CrossRefGoogle Scholar
40.Wu, R., Freeman, A. J., and Olson, G. B., Science 265, 376 (1994).CrossRefGoogle Scholar
41.Liu, Y., Chen, K.Y., Lu, G., Zhang, J.H., and Hu, Z.Q., Acta Mater. 45, 1837 (1997).CrossRefGoogle Scholar