Published online by Cambridge University Press: 31 January 2011
Some recent studies on fluoropolymers that exhibit substantially increased barrier properties against the migration of moisture when compared to conventional fiber coating materials, and as a result may offer unique advantages for use in optical fiber applications, are reported. Moisture vapor permeability studies of cis-trans fluoropolyol polyacrylate indicate that it can offer up to an order of magnitude reduction in H2O permeability relative to commercially available UV curable acrylate coatings. Experimentally determined permeability coefficients were of the order of 10−12 g cm−2 s−1 cm/mm Hg and diffusion coefficients were of the order of 10−10 cm2 s−1. In addition to improved barrier properties, incorporation of fluorine into the polymer structure lowers the index of refraction of the polymer enabling a material to be tailored for use as a cladding in conjunction with silica glass. The index of refraction of cis-trans fluoropolyol polyacrylate was determined, using index matching oils, to be 1.437 (lower than the silica core) permitting its use as a cladding. Other material parameters relevant to fiber coatings have also been measured. The elastic modulus E of the material was determined to be 1010 dyn/cm2 with a slow drop to 108 dyn/cm2 at the glass transition temperature ∼45°C. In addition, an improved formulation of cis-trans fluoropolyol polyacrylate is presented that allowed in-line coating of the optical fiber in an oxygen environment.