Published online by Cambridge University Press: 13 April 2015
In this study, the interfacial adhesion of Cu and TiN on an annealed borophosphosilicate glass (BPSG) in a multilayer material stack was investigated. The two material systems, Cu/BPSG and TiN/BPSG, are representatives for weak and strong interfaces, respectively. A weak and a strong interface was chosen to identify possible differences in the fracture path selection for the multilayer material systems. To investigate this, in situ 4-point-bending experiments were performed under an optical microscope and in a scanning electron microscope. Complementary ex situ 4-point-bending experiments were carried out on the identical material systems. These tests revealed that for the two analyzed systems there is a large discrepancy in the success rate of failure along the interface of interest, which is a prerequisite for determining the corresponding interface energy release rate. This phenomenon can be understood by using theoretical findings of earlier studies reported in the literature, which are in agreement with the experimental outcome of the in situ 4-point-bending measurements presented here.