Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T17:28:11.541Z Has data issue: false hasContentIssue false

Formation and characterization of nanostructured V—P—O particles in flames: A new route for the formation of catalysts

Published online by Cambridge University Press:  03 March 2011

Philippe F. Miquel
Affiliation:
Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218-2689
Joseph L. Katz*
Affiliation:
Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218-2689
*
a)Address all correspondence to this author.
Get access

Abstract

A counterflow diffusion flame burner was used to produce nanophase vanadium-phosphorus oxide powders in a hydrogen-oxygen flame. Liquid precursors, i.e., VOCl3 and PCl3, were used as source materials in a 1:1 ratio. In situ formation processes were investigated at two temperatures by laser light scattering, by emission and absorption spectroscopy, and by collecting particles directly onto carbon-coated TEM grids. At the higher temperature, the collected powders are spherical particles about 30 to 50 nm in diameter. At the lower temperature, the powders collected are chain-like structures composed of particles 5 to 10 nm in diameter. Particles formed in the burner were collected also from the burner's flanges and from two auxiliary strips. Their crystalline phases and surface area were determined by x-ray diffractometry, FT-IR spectroscopy, and BET analysis by nitrogen desorption. These results indicate a strong influence of temperature on the crystalline phases of the powders. At the higher temperature, the powder collected is a mixture of VOPO4 · 2H2O and δ-VOPO4. This mixture forms Λ-VOPO4 upon subsequent reheating at 750 °C. At the lower temperature, the powders collected are a VOHxPO4 · yH2O phase and VO(H2PO4)2, and form β-VOPO4 and V(PO3)3, respectively, upon subsequent reheating at 750 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ai, M., Boutry, P., and Montarnal, R., Bull. Soc. Chim. Fr. 8, 2775 (1970).Google Scholar
2Ai, M., Boutry, P., Montarnal, R., and Thomas, G., Bull. Soc. Chim. Fr. 8, 2783 (1970).Google Scholar
3Bordes, E., Catal. Today 16, 27 (1993).CrossRefGoogle Scholar
4Bordes, E., Catal. Today 1, 499 (1987).CrossRefGoogle Scholar
5Hodnett, B. K., Catal. Rev.-Sci. Eng. 27, 373 (1985).Google Scholar
6Busca, G., Cavani, F., Centi, G., and Trifirò, F., J. Catal. 99, 400 (1986).Google Scholar
7Bordes, E. and Courtine, P., J. Chem. Soc, Chem. Commun. 294 (1985).Google Scholar
8Bordes, E. and Courtine, P., J. Catal. 57, 236 (1979).CrossRefGoogle Scholar
9Harrouch, N. Batis, Batis, H., Ghorbel, A., Vedrine, J. C., and Volta, J. C., J. Catal. 128, 248 (1991).Google Scholar
10Courtine, P., Solid State Chemistry in Catalysis, A.C.S. Symp. Series 279, 37 (1985).Google Scholar
11Volta, J. C. and Portefaix, J. L., Appl. Catal. 18, 1 (1985).CrossRefGoogle Scholar
12Bordes, E., Courtine, P., and Pannetier, G., Ann. Chim. 8, 105 (1973).Google Scholar
13Hodnett, B. K. and Delmon, B., Appl. Catal. 9, 203 (1984).CrossRefGoogle Scholar
14Centi, G., Maneti, I., Riva, A., and Trifirò, F., Appl. Catal. 9, 177 (1984).CrossRefGoogle Scholar
15Poli, G., Resta, I., Ruggeri, O., and Trifirò, F., Appl. Catal. 1, 395 (1981).CrossRefGoogle Scholar
16Cavani, F., Centi, G., and Trifirò, F., Appl. Catal. 9, 191 (1984).CrossRefGoogle Scholar
17Johnson, J. W., Johnston, D. C., and Jacobson, A. J., in Preparation of Catalysts IV (Elsevier Science Publishing, Amsterdam, 1987).Google Scholar
18Bordes, E., Johnson, J. W., Raminosona, A., and Courtine, P., Mater. Sci. Monograf. 28B, 887 (1985).Google Scholar
19Johnson, J. W., Johnston, D. J., Jacobson, A. J., and Brody, J. F., J. Am. Chem. Soc. 106, 8123 (1984).Google Scholar
20Beck, D. D. and Siegel, R. W., J. Mater. Res. 7, 2840 (1992).Google Scholar
21Hung, C-H. and Katz, J.L., J. Mater. Res. 7, 1861 (1992).Google Scholar
22Hung, C-H., Miquel, P. F., and Katz, J. L., J. Mater. Res. 7, 1870 (1992).Google Scholar
23Miquel, P. F., Hung, C-H., and Katz, J.L., J. Mater. Res. 8, 2404 (1993).Google Scholar
24Katz, J. L. and Hung, C-H., Combust. Sci. Technol. 82, 169 (1992).Google Scholar
25Kostkowski, H. J. and Broida, H. P., J. Opt. Soc. Am. 46, 246 (1956).CrossRefGoogle Scholar
26Dieke, G. H. and Crosswhite, H. M., J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).CrossRefGoogle Scholar
27Chung, S. L., Ph.D. Thesis, The Johns Hopkins University, Baltimore, MD (1985).Google Scholar
28Gaydon, A. G., The Spectroscopy of Flame (Chapman and Hall, London, 1974).Google Scholar
29Dagnall, R. M., Thompson, K. C., and West, T. S., Analyst 93, 72 (1968).CrossRefGoogle Scholar
30Hung, C-H., Ph.D. Thesis, The Johns Hopkins University, Baltimore, MD (1991).Google Scholar
31Dobbins, R. A. and Megaridis, CM., Langmuir 3, 254 (1987).CrossRefGoogle Scholar
32Samsonov, G. V., The Oxide Handbook (Plenum Press, New York, 1973).Google Scholar
33The chain-like and the spherical particles collected on TEM grids in Flame 1 have structures and morphologies similar to those collected in Flame 2 (shown in Fig. 4), although their sizes are different, as stated in the text.Google Scholar
34Ladwig, G., Z. Anorg. Allg. Chem. 338, 266 (1965).CrossRefGoogle Scholar
35Schneider, A., Thesis, Université de Bordeaux, France (1987).Google Scholar
36Bhargava, R. N. and Condrate, R. A., Appl. Spectrosc. 3, 230 (1977).CrossRefGoogle Scholar
37Amorós, P., Ibáñez, R., Martinez-Tamayo, E., Beltrán-Porter, A., and Beltrán-Porter, D., Mat. Res. Bull. XXIV, 1347 (1989).Google Scholar
38Ladwig, G., Z. Chem. 8, 307 (1968).CrossRefGoogle Scholar
39Note that x-ray and FT-IR analyses of the powders collected in both Flames show the presence of hydrated phases. Because of the high temperatures, it is likely that the powders which actually formed in the flame are not hydrated, and that these highly hygroscopic powders hydrated on the collection strips or in later handling.Google Scholar
40Lavrov, A. V., Guzeeva, L. S., and Fedorov, P. M., Izv. Akad. Nauk SSSR, Neorg. Mater. 10, 1280 (1974).Google Scholar
41Tofield, B. C., Crane, G. R., Pasteur, G. A., and Sherwood, R. C., J. Chem. Soc. Dalton Trans., 1806 (1975).CrossRefGoogle Scholar