Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T19:27:59.721Z Has data issue: false hasContentIssue false

Formation and growth of an amorphous phase by solid-state reaction between GaAs and Co thin films

Published online by Cambridge University Press:  31 January 2011

F-Y. Shiau
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706
S-L. Chen
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706
M. Loomans
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706
Y.A. Chang
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706
Get access

Abstract

Solid-state amorphization reaction (SSAR) between GaAs and Co thin films was investigated by transmission electron microscopy and Auger electron spectroscopy. Upon annealing of GaAs/Co thin-film couples at 260–300 °C, an amorphous phase was observed to form. Annealing at higher temperatures or for longer times led to the crystallization of the amorphous phase into a supersaturated CoAs solid solution phase with the B31 structure. Amorphization is attributed to the rapid diffusion of Co in the rather open GaAs structure. In order to consider the thermodynamic driving force for amorphization and subsequent crystallization, the phase diagram of CoGa–CoAs was investigated using DTA and metallography. The pseudobinary system was modeled thermodynamically to yield relative stability data for the various phases between GaAs and Co. These data were used to rationalize the amorphization process.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
2.Schwarz, R. B., Wong, K. L., Johnson, W. L., and Clemens, B. M., J. Non-Cryst. Solids 61–62, 129 (1984).CrossRefGoogle Scholar
3.Clemens, B. M., Johnson, W. L., and Schwarz, R. B., J. Non-Cryst. Solids 61–62, 817 (1984).CrossRefGoogle Scholar
4.Newcomb, S.B. and Tu, K.N., Appl. Phys. Lett. 48, 1437 (1986).CrossRefGoogle Scholar
5.Barbour, J. C., Saris, F. W., Wastasi, M., and Mayer, J. W., Phys. Rev. B 32, 1363 (1985).CrossRefGoogle Scholar
6.Schroder, H., Samwer, K., and Koster, U., Phys. Rev. Lett. 54, 197 (1985).CrossRefGoogle Scholar
7.Van Rossum, M., Nicolet, M. A., and Johnson, W. L., Phys. Rev. B 29, 5498 (1984).CrossRefGoogle Scholar
8.Guilmin, P., Guyot, P., and Marchai, G., Phys. Lett. 109A, 174 (1985).CrossRefGoogle Scholar
9.Herd, S.R., Tu, K.N., and Ahn, K.Y., Appl. Phys. Lett. 42, 597 (1983).CrossRefGoogle Scholar
10.Clevenger, L.A., Thompson, C.V., De Avillez, R.R., and Tu, K.N., in Chemistry and Defects in Semiconductor Heterostructures, edited by Kawabe, M., Sands, T.D., Weber, E.R., and Williams, R.S. (Mater. Res. Soc. Symp. Proc. 148, Pittsburgh, PA, 1989), p. 77.Google Scholar
11.Matan, M., Appl. Phys. Lett. 49, 257 (1986).Google Scholar
12.Holloway, K. and Sinclair, R., J. Appl. Phys. 61, 1359 (1987).CrossRefGoogle Scholar
13.Lur, W. and Chen, L.J., Appl. Phys. Lett. 54, 1217 (1989).CrossRefGoogle Scholar
14.Cheng, J.Y. and Chen, L.J., Appl. Phys. Lett. 57, 612 (1990).CrossRefGoogle Scholar
15.Uskov, V.A., Fedotov, A.B., Eroteeva, E.A., Rodionov, A.I., and Dzhumakulov, D. T., Izv. Akad. Nauk SSSR, Neorgan. Mater. 23, 186 (1987).Google Scholar
16.Sands, T., Chang, C.C., Kaplan, A.S., Keramidas, V.G., Kirshnan, K.M., and Washburn, J., Appl. Phys. Lett. 50, 1346 (1987).CrossRefGoogle Scholar
17.Caron-Popowich, R., Washburn, J., Sands, T., and Kaplan, A. S., J. Appl. Phys. 64, 4909 (1988).CrossRefGoogle Scholar
18.Shiau, F. Y. and Chang, Y. A., Appl. Phys. Lett. 55, 1510 (1989).CrossRefGoogle Scholar
19.Shiau, F. Y., Ph. D. Thesis, University of Wisconsin, Madison, WI (1990).Google Scholar
20.Shiau, F. Y. and Chang, Y. A., in Thin-Film Structures and Phase Stability, edited by Clemens, B. M. and Johnson, W. I. (Mater. Res. Soc. Symp. Proc. 187, Pittsburgh, PA, 1990), p. 89.Google Scholar
21.Chen, S-W., Jan, C-H., Lin, J-C., and Chang, Y. A., Metall. Trans. 20A, 2247 (1989).CrossRefGoogle Scholar
22.Palmström, C.J., Chang, C.C., Yu, A., Galvin, G.J., and Mayer, J.W., J. Appl. Phys. 62, 3755 (1987).CrossRefGoogle Scholar
23.Genut, M. and Eizenberg, M., J. Appl. Phys. 66, 5456 (1989).CrossRefGoogle Scholar
24.Shiau, F. Y. and Chang, Y. A., in Chemistry and Defects in Semiconductor Heterostructures, edited by Kawabe, M., Sands, T. D., Weber, E. R., and Williams, R. S. (Mater. Res. Soc. Symp. Proc. 148, Pittsburgh, PA, 1989), p. 29.Google Scholar
25.Shiau, F. Y., Chang, Y. A., and Chen, L. J., J. Electron. Mater. 17, 433 (1988).CrossRefGoogle Scholar
26.Shiau, F.Y., Zuo, Y., Lin, J. C., Zheng, X.Y., and Chang, Y.A., Z. Metalik. 80, 544 (1989).Google Scholar
27.Hauser, J. J., Phys. Rev. B 32, 2887 (1985).CrossRefGoogle Scholar
28.Chuang, Y-Y., Schmid, R., and Chang, Y.A., Metall. Trans. 15A, 1921 (1984).CrossRefGoogle Scholar
29.Kulikov, G. S. and Nikulitsa, I. N., Sov. Phys.-Solid State 14, 2335 (1973).Google Scholar
30.Plafrey, H. D., Brown, M., and Willoughby, A.F.W., J. Electrochem. Soc. 128, 2224 (1981); J. Electron. Mater. 12, 863 (1983).CrossRefGoogle Scholar
31.Lin, J-C., Schulz, K.J., Hsieh, K-C., and Chang, Y.A., in High Temperature Materials Chemistry TV, edited by Munir, Z. A., Cubiccioti, D., and Tagawa, H. (Electrochem. Soc, Inc., Pennington, NJ, 1988), p. 476.Google Scholar
32.Lin, J-C., Schulz, K.J., Hsieh, K-C., and Chang, Y.A., J. Electrochem. Soc. 136, 3006 (1989).CrossRefGoogle Scholar
33.Schultz, A. E., Ph. D. Thesis, University of Wisconsin, Madison, WI (1988).Google Scholar
34.Hultgren, R.R., Desai, P.D., Hawkins, D.T., Gleiser, M., Kelley, K.K., and Wagman, D. D., Selected Values of the Thermodynamic Properties of the Elements (American Soc. for Metals, Metals Park, OH44073, 1973).Google Scholar
35.Kochnev, M. I., Doklady Akad. Nauk SSSR 70, 433 (1950).Google Scholar
36.Mikula, A., Chang, Y. A., and Neumann, J. P., Trans. Jpn. Inst. Metals 19, 307 (1978).CrossRefGoogle Scholar
37.Cahn, J.W., J. Am. Ceram. Soc. 52, 118 (1969).CrossRefGoogle Scholar
38.Saunders, N. and Miodownik, A. P., J. Mater. Res. 1, 38 (1986).CrossRefGoogle Scholar
39.Clemens, B. M. and Sinclair, R., MRS Bulletin XV (2), 19 (1990).CrossRefGoogle Scholar
40.Gachon, J. C. and Hertz, J., CALPHAD 7, 1 (1983).CrossRefGoogle Scholar
41.Jan, C-H., Swenson, D., Zheng, X-Y., Lin, J-C., and Chang, Y.A., Acta Metall, et Mater. 39, 303 (1991).CrossRefGoogle Scholar
42.Jan, C-H., Swenson, D., and Chang, Y. A., in Fundamentals and Applications of Ternary Diffusion, edited by Purdy, G. R. (Pergamon Press, New York, 1990), p. 127.CrossRefGoogle Scholar
43.Lur, W. and Chen, L.J., Appl. Phys. Lett. 54, 1217 (1989).CrossRefGoogle Scholar
44.Zhang, M-X., Chang, Y. A., and Marcotte, V. C., J. Electrochem. Soc. 137, 3158 (1990).CrossRefGoogle Scholar