Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T11:51:26.946Z Has data issue: false hasContentIssue false

Formation and phase transition of VO2 precipitates embedded in sapphire

Published online by Cambridge University Press:  31 January 2011

Laurence A. Gea
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
J. D. Budai
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
L. A. Boatner
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

Crystallographically coherent precipitates of vanadium dioxide (VO2) have been formed in the near-surface region of single crystals of sapphire (Al2O3) using a combination of ion implantation and thermal treatments. As in the case of either bulk VO2 single crystals or thin films of VO2, the thermally induced semiconductor-to-metal phase transition of the embedded VO2 precipitates is accompanied by a large hysteretic change in the infrared optical transmission. The VO2 precipitate transition temperature (Tc = 72 to 85 °C) is higher than that of bulk VO2 (Tc = 68 °C) and is sensitive to the implantation conditions. The present results show that the damage resulting from the coimplantation of vanadium and oxygen into an Al2O3 host lattice dictates the final microstructure of the VO2 precipitates and, consequently, affects the transition temperature, as well as the optical quality of the VO2/Al2O3 surface-nanocomposite precipitate system.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Case, F. C., J. Vac. Sci. Technol. A2, 1509 (1984).CrossRefGoogle Scholar
2.Marezio, M., McWhan, D. B., Remeika, J. P., and Dernier, P. D., Phys. Rev. B 5, 2541 (1972).CrossRefGoogle Scholar
3.Partlow, D. P., Gurkovich, S. R., Radford, K. C., and Denes, L. J., J. Appl. Phys. 70, 443 (1991).CrossRefGoogle Scholar
4.De Natale, J. F., Hood, P. J., and Harker, A. B., J. Appl. Phys. 66, 5844 (1989).CrossRefGoogle Scholar
5.Roach, W. R., Appl. Phys. Lett. 19, 453 (1971).CrossRefGoogle Scholar
6.Smith, A. W., Appl. Phys. Lett. 23, 437 (1973).CrossRefGoogle Scholar
7.Lee, C. E., Atkins, R. A., Gibler, W. N., and Taylor, H. F., Appl. Opt. 28, 4511 (1989).CrossRefGoogle Scholar
8.Smith, A. W., Appl. Phys. Lett. 23, 437 (1973).CrossRefGoogle Scholar
9.Roach, W. R., Appl. Phys. Lett. 19, 453 (1971).CrossRefGoogle Scholar
10.Gea, L. A., Boatner, L. A., Rankin, J., and Budai, J. D., in Beam-Solid Interactions for Materials Synthesis and Characterization, edited by Luzzi, D. E., Heinz, T. F., Iwaki, M., and Jacobson, D. C. (Mater. Res. Soc. Symp. Proc. 345, Pittsburgh, PA, 1995), p. 269.Google Scholar
11.Gea, L. A. and Boatner, L. A., Appl. Phys. Lett. 68, 3081 (1996).CrossRefGoogle Scholar
12.Gea, L. A., Boatner, L. A., Evans, H. M., and Zuhr, R., Nucl. Instrum. Meth. Phys. Res. B127/128, 553 (1997).CrossRefGoogle Scholar
13.Morin, F. J., Phys. Rev. Lett. 3, 34 (1959).CrossRefGoogle Scholar
14.Goodenough, J. B., J. Solid State Chem. 3, 490 (1971).CrossRefGoogle Scholar
15.White, C. W., McHargue, C. J., Sklad, P. S., Boatner, L. A., and Farlow, G. C., Mater. Sci. Rep. 4, 41146 (1989).CrossRefGoogle Scholar
16.Budai, J. D., White, C. W., Withrow, S. P., Chisholm, M. F., Zhu, J. G., and Zuhr, R. A., Nature 390, 384 (1997).CrossRefGoogle Scholar
17.White, C. W., Budai, J. D., Zhu, J.G., Withrow, S. P., Zuhr, R. A., Hembree, D.M., Henderson, D.O., Ueda, A., Tung, Y.S., and Mu, R.H., J. Appl. Phys. 79, 1876 (1996).CrossRefGoogle Scholar
18.Chang, H. L. M., You, H., Guo, J., and Lam, D. J., Appl. Surf. Sci. 48/49, 12 (1991).CrossRefGoogle Scholar
19.JCPDS, International Center for Diffraction Data, 1601 Park Lane, Swarthmore, PA.Google Scholar
20.Choi, H. S., Ahn, J. S., Jung, J. H., Noh, T. W., and Kim, D. H., Phys. Rev. B 54, 4621 (1996).CrossRefGoogle Scholar
21.Phillips, D. S., Heuer, A. H., and Mitchell, T. E., Philos. Mag. A 42, 385 (1980).CrossRefGoogle Scholar
22.Naramoto, H., McHargue, C. J., White, C. W., Williams, J. M., Holland, O. W., Abraham, M. M., and Appleton, B. R., Nucl. Instrum. Meth. 209/210, 1159 (1983).CrossRefGoogle Scholar
23.Gea, L. A., Boatner, L. A., Budai, J. D., and Zuhr, R. A., in Ion-Solid Interactions for Materials Modification and Processing, edited by Poker, D. B., Ila, D., Cheng, Y-T., Harriott, L. R., and Sigmon, T. W. (Mater. Res. Soc. Symp. Proc. 396, Pittsburgh, PA, 1995), p. 215.Google Scholar
24.Case, F. C., Appl. Opt. 30, 4119 (1991).CrossRefGoogle Scholar
25.Griffiths, C. H. and Eastwood, H. K., J. Appl. Phys. 45, 2201 (1974).CrossRefGoogle Scholar
26.Phillips, D. S., Heuer, A. H., and Mitchell, T. E., Philos. Mag. A 42, 405 (1980).CrossRefGoogle Scholar
27.Phillips, D. S., Heuer, A. H., and Mitchell, T. E., Philos. Mag. A 42, 417 (1980).CrossRefGoogle Scholar