Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T18:18:37.680Z Has data issue: false hasContentIssue false

Formation and structure of tin-iron oxide thin film CO sensors

Published online by Cambridge University Press:  03 March 2011

P. Bonzi
Affiliation:
Dipartimento Ingegneria Meccanica, Università di Brescia, Via Branze 38, 25123 Brescia, Italy
L.E. Depero
Affiliation:
Dipartimento Ingegneria Meccanica, Università di Brescia, Via Branze 38, 25123 Brescia, Italy
F. Parmigiani
Affiliation:
Dipartimento Materiali, CISE S.p.A., P.O. Box 12081, 20134 Milan, Italy
C. Perego
Affiliation:
Dipartimento Ingegneria Elettronica, Università di Brescia, Via Branze 38, 25123 Brescia, Italy
G. Sberveglieri
Affiliation:
Dipartimento Ingegneria Elettronica, Università di Brescia, Via Branze 38, 25123 Brescia, Italy
G. Quattroni
Affiliation:
Centro Ricerche ENEL di Brindisi, Via Dalmazia 21/c, Brindisi, Italy
Get access

Abstract

Rheotaxial growth and thermal oxidation (RGTO) for depositing thin films is a recognized technique in preparing gas sensitive semiconducting oxides. This paper presents a study performed by x-ray diffraction and scanning Auger microscopy of the mechanisms of growth and formation of the thin films of the new ternary compound Sn1−xFexOy with an iron content in the range O < x < 25 at. %. A structural model of this compound, which is found to be stable over a very large range of Sn/Fe ratios, can be derived by partially substituting Fe3+ ions in Sn4+ sites. This is an easy substitution in view of the similar values shown by the ionic radii (Fe3+ = 0.64 Å, Sn4+ = 0.71 Å) and the Pauling electronegativity (Fe3+ = 1.8, Sn4+ = 1.8) of these two ions. Experimental data, showing that this material is an excellent CO sensor, are reported.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Taguchi, N., U. S. Patent 3631 436 (1971).Google Scholar
2Lantto, V. and Romppainen, P., Surf. Sci. 192, 243264 (1987).CrossRefGoogle Scholar
3Sberveglieri, G., Faglia, G., Groppelli, S., and Nelli, P., Sensors and Actuators B 8, 179189 (1992).CrossRefGoogle Scholar
4Sberveglieri, G., Faglia, G., Groppelli, S., Nelli, P., and Camanzi, A., Semicond. Sci. Technol. 5, 12311233 (1990).CrossRefGoogle Scholar
5Sberveglieri, G., Sensors and Actuators 6, 239247 (1992).CrossRefGoogle Scholar
6Bushert, R. C., Gibson, P. N., Gissler, W., Haupt, J., and Crabb, T. A., Coll. de Physique SO, C7169 (1989).Google Scholar
7The calculations were performed using the two programs by L. Luterotti and P. Scardi, General Peak Separation Routine-MARQFIT (1990) and Line Broadening Analysis by W.A.X.S. (1992).Google Scholar
8Sberveglieri, G., Groppelli, S., Nelli, P., and Camanzi, A., Sensors and Actuators B 3, 183189 (1991).CrossRefGoogle Scholar
9Wells, A. F., Structural Inorganic Chemistry (Oxford University Press, Oxford, 1984).Google Scholar
10Jega-Mariadassau, C. D., Basile, F., Poix, P., and Michel, A., Annales de Chemie (Paris) 73, 15 (1973).Google Scholar
11Windischmann, H. and Mark, P., J. Electrochem. Soc. 126 (4), 627633 (1979).CrossRefGoogle Scholar
12Sberveglieri, G., Perego, C., Parmigiani, F., and Quattroni, G., Sensors and Actuators B (in press).Google Scholar