Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T01:03:34.306Z Has data issue: false hasContentIssue false

Formation kinetics of nanocrystalline Fe–4 wt.% Al solid solution during ball milling

Published online by Cambridge University Press:  31 January 2011

H. G. Jiang
Affiliation:
Department of Chemical Engineering and Materials Science, University of California–Irvine, Irvine, California 92717–2575
R. J. Perez
Affiliation:
Department of Chemical Engineering and Materials Science, University of California–Irvine, Irvine, California 92717–2575
M. L. Lau
Affiliation:
Department of Chemical Engineering and Materials Science, University of California–Irvine, Irvine, California 92717–2575
E. J. Lavernia
Affiliation:
Department of Chemical Engineering and Materials Science, University of California–Irvine, Irvine, California 92717–2575
Get access

Abstract

Formation of nanocrystalline Fe–4 wt.% Al solid solution has been achieved through SPEX ball milling of blended elemental Fe and Al powders. Differential scanning calorimetry (DSC) and x-ray diffraction (XRD) have been employed to follow the structural evolution during the ball-milling process. Exothermic peaks exhibited in DSC diagrams of the powders milled for 10 to 60 min yielded thermal enthalpies corresponding to the formation of Fe–4 wt.% Al solid solution, from which the kinetics of formation were found to follow the Johnson–Mehl–Avrami equation. Assessment of the kinetic parameter n reveals a diffusion controlled mechanism, in which grain and interphase boundaries may play a crucial role, during the solid solution formation of Fe–4 wt.% Al.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Benjamin, J. S., Metall. Trans. A 1, 217 (1970).Google Scholar
2.Benjamin, J. S., in Mechanical Alloying, edited by Shingu, P. H. (Trans. Tech., Aedermannsdorf, Germany, 1992), p. 1.Google Scholar
3.Koch, C. C., Cavin, O. B., Mckamey, C. G., and Scarbrough, J. O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
4.Koch, C. C., J. Non-Cryst. Solids 117/118, 670 (1990).CrossRefGoogle Scholar
5.Benjamin, J. S., Sci. Am. 234, 40 (1976).CrossRefGoogle Scholar
6.Hellstern, E., Fecht, H. J., Garland, C., and Johnson, W. L., J. Appl. Phys. 65, 305 (1989).CrossRefGoogle Scholar
7.Morris, D. G. and Morris, M. A., Mater. Sci. Eng. A110, 139 (1989).CrossRefGoogle Scholar
8.Perez, R. J., Jiang, H. G., and Lavernia, E. J., Nanostructured Mater. (1996, in press).Google Scholar
9.de Keijser, Th. H., Langford, J. I., Mittemeijer, E. J., and Vogels, A. B. P., J. Appl. Crystallogr. 15, 308 (1982).CrossRefGoogle Scholar
10.Moelle, C., Schmidt, C., Muller, K., and Fecht, H. J., in Synthesis and Processing of Nanocrystalline Powder, edited by Bourell, D. L. (1996), p. 121.Google Scholar
11.Selected Values of Thermodynamic Properties of Metals and Alloys, edited by Hultgren, R., Orr, R. L., Anderson, P. D., and Kelley, K. K. (John Wiley & Sons, Inc., New York, 1963), p. 415.Google Scholar
12.Shaikh, A. S. and Vest, G. M., J. Am. Ceram. Soc. 69, 682 (1986).CrossRefGoogle Scholar
13.Kissinger, H. E., Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
14.Hood, G. M., Philos. Mag. 21, 305 (1970).CrossRefGoogle Scholar
15.Vignes, A., Philibert, J., Badia, N., and Levasseur, J., Diffusion Data 3, 269 (1969).Google Scholar
16.Bellon, P. and Averbach, R. B., Phys. Rev. Lett. 74, 1819 (1995).CrossRefGoogle Scholar