Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-15T01:25:34.040Z Has data issue: false hasContentIssue false

Formation mechanism and relaxor ferroelectric properties of lead lithium iron tungstate ceramics

Published online by Cambridge University Press:  03 March 2011

Chung-Hsin Lu*
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
Wen-Shin Hwang
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
*
a)Author to whom all correspondence should be addressed.
Get access

Abstract

The formation mechanism and ferroelectric properties of Pb(Li1/4Fe1/4W1/2)O3 prepared by solid-state reaction have been investigated in this study. The formation processes of Pb(Li1/4Fe1/4W1/2)O3 are characterized to be an initial reaction of lead tungstates PbWO4 and Pb2WO5 at a low temperature range, followed by a subsequent reaction to produce Pb(Li1/4Fe1/4W1/2)O3 from above 650 °C. Through a two-stage calcination (700 °C/quenching-regrinding-710 °C/8 h), a nearly single phase of Pb(Li1/4Fe1/4W1/2)O3 is obtained. This compound exhibits a cubic perovskite structure (α = 8.0113 Å) with a partial ordering arrangement of B-site cations. Above 720 °C, becomes Pb(Li1/4Fe1/4W1/2)O3 thermodynamically unstable and gradually decomposes in forming elongated Pb2WO5 grains, thereby resulting in a nonhomogeneous microstructure. As the ac frequency increases, the maximum dielectric permittivity of Pb(Li1/4Fe1/4W1/2)O3 significantly decreases; in addition, the corresponding temperature increases. The strong frequency dependence of dielectric properties, as well as the critical exponent and diffuseness evaluated through a modified permittivity-temperature equation proposed in this study, verify the relaxor characteristics of Pb(Li1/4Fe1/4W1/2)O3

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cross, L.E., Ferroelectr. 76, 241 (1987).CrossRefGoogle Scholar
2Shrout, T.R. and Halliyal, A., Am. Ceram. Soc. Bull. 66, 704 (1987).Google Scholar
3Lu, C.H., Bull. Coll. Eng. N.T.U. 59, 117 (1993).Google Scholar
4Uchino, K. and Nomura, S., J. Phys. Soc. Jpn. 41, 542 (1976).CrossRefGoogle Scholar
5Amin, A., Newnhem, R.E., Cross, L.E., Nomura, , and Cox, D.E., J. Solid State Chem. 35, 267 (1980).CrossRefGoogle Scholar
6Yonezawa, M., Am. Ceram. Soc. Bull. 62, 1375 (1983).Google Scholar
7Yan, M. F., Ling, H. C., and Rhodes, W. W., J. Mater. Res. 4, 930 (1989).CrossRefGoogle Scholar
8Chen, J. and Harmer, M.P., J. Am. Ceram. Soc. 73, 68 (1990).CrossRefGoogle Scholar
9Goda, K. and Kuwabara, M., J. Ceram. Soc. Jpn. 99, 163 (1991).CrossRefGoogle Scholar
10Venevstev, Yu. N., Roginskaya, Yu E., Viskov, A. S., Ivanova, V. V., Tomashpol'skii, Yu. Ya., Shvorneva, L.I., Kapyshev, A.G., Teverovskii, A. Yu., and Zhdanov, G. S., Sov. Phys. Crystallogr. 9, 751 (1965).Google Scholar
11Viskov, A. S., Venevstev, Yu. N., Zhdanov, G. S., and Onikienko, L. D., Sov. Phys. Crystallogr. 10, 720 (1966).Google Scholar
12Shvornea, L.I., Venevstev, Yu. N., and Zhdanov, G.S., Inorg. Mater. 2, 1602 (1966).Google Scholar
13Sakata, K. and Takahara, H., Jpn. J. Appl. Phys., 26 Suppl. 26–2, 83 (1987).CrossRefGoogle Scholar
14Lu, C. H., Ishizawa, N., Shinozaki, K., Mizutani, N., and Kato, M., J. Mater. Sci. Lett. 7, 1078 (1988).CrossRefGoogle Scholar
15Lu, C.H., Shinozaki, K., Mizutani, N., and Kato, M., J. Ceram. Soc. Jpn. Int. Ed. 97, 115 (1989).CrossRefGoogle Scholar
16Mizutani, N., Lu, C. H., Shinozaki, K., and Kato, M., J. Am. Ceram. Soc. 3, 1214 (1990).CrossRefGoogle Scholar
17Lu, C.H., J. Am. Ceram. Soc. 77, 2529 (1994).CrossRefGoogle Scholar
18Smolenskii, G.M., Proc. Int. Meet. Ferroelectr. 2nd 26, 1969 (1970).Google Scholar
19Nomura, S., Jang, S.J., Cross, L. E., and Newnham, R. E., J. Am Ceram. Soc. 62, 485 (1979).CrossRefGoogle Scholar
20Uchino, K. and Nomura, S., Ferroelectr. Lett. 44, 55 (1982).CrossRefGoogle Scholar
21Pilgrim, S.M., Sutherland, A.E., and Winzer, S.R., J. Am. Ceram. Soc. 73, 3122 (1990).CrossRefGoogle Scholar
22Yasuda, N., Fujimoto, S., and Tanaka, K., J. Phys. D: Appl. Phys. 18, 1909 (1985).CrossRefGoogle Scholar