Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T19:29:59.470Z Has data issue: false hasContentIssue false

Formation of Bi-2212 superconducting whiskers from melt-quenched BSCCO containing alumina

Published online by Cambridge University Press:  03 March 2011

Toshihiro Kasuga*
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Masayasu Ono
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Kenji Tsuji
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Yoshihiro Abe
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Koichi Nakamura
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Eikichi Inukai
Affiliation:
Chubu Electric Power Co. Inc., Oodaka, Midori-ku, Nagoya 459, Japan
*
a)Address all correspondence to this author.
Get access

Abstract

Bi–Sr–Ca–Cu–O (BSCCO) superconducting whiskers (2212 phase) were prepared by heating in air the compacted specimens of the mixtures of melt-quenched Bi2SryCa2Cu4Al1Ox powders and alumina powders. Formation of the whiskers depends on the composition and the applied pressure of the compacts. The optimum composition of the melt-quenched products for preparing the long whiskers is Bi2Sr2Ca2Cu4Al1Ox. Superconducting whiskers <1 mm in length (2212 phase) containing an excess amount of copper were grown numerously from the specimen compacted at 20 MPa; long whiskers (2212 phase) of 1–5 mm in length were obtained from that compacted at 180 MPa. These whiskers showed diamagnetic signals below Tc ≃ 80 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ciszek, T. F., Goral, J. P., Evans, C. D., and Yoshida, H. K., J. Cryst. Growth 91, 312 (1988).CrossRefGoogle Scholar
2Takekawa, S., Nozaki, H., Umezono, A., Kosuda, K., and Kobayashi, M., J. Cryst. Growth 92, 687 (1988).CrossRefGoogle Scholar
3Jung, J., Franck, J. P., Mitchell, D. F., and Claus, H., Physica C 156, 494 (1988).Google Scholar
4Matsubara, I., Tanigawa, H., Ogura, T., Yamashita, H., Kinoshita, M., and Kawai, T., Appl. Phys. Lett. 56, 2141 (1990).CrossRefGoogle Scholar
5Matsubara, I., Tanigawa, H., Ogura, T., Yamashita, H., Kinoshita, M., and Kawai, T., Physica C 167, 503 (1990).CrossRefGoogle Scholar
6Jin, H., Hu, Z., Ge, Y., Liu, Q., Wang, Y., and Shi, C., Mater. Lett. 12, 286 (1991).Google Scholar
7Abe, Y., Hirata, K., Hosono, H., and Kubo, Y., J. Mater. Res. 7, 1599 (1992).CrossRefGoogle Scholar
8Abe, Y., Hosono, H., Hosoe, M., Iwase, J., and Kubo, Y., Appl. Phys. Lett. 53, 1341 (1988).CrossRefGoogle Scholar
9Lee, W-H., Hosono, H., and Abe, Y., Proc. 16th Int. Congr. Glass, edited by Duran, A. and Navarro, J. M.F. (Madrid, 1992), Vol. 4, pp. 169-174.Google Scholar
10Kasuga, T. and Abe, Y., J. Am. Ceram. Soc. 76, 1885 (1993).CrossRefGoogle Scholar
11Matsubara, I., Ogura, T., Tanigawa, H., Yamashita, H., Kinoshita, M., and Kawai, T., J. Cryst. Growth 110, 973 (1991).CrossRefGoogle Scholar
12Zandbergen, H. W., Huang, Y. K., Menken, M. J. V., Li, J. N., Kadowaki, K., Menovsky, A. A., van Tendeloo, G., and Amelinckx, S., Nature 332, 620 (1988).CrossRefGoogle Scholar
13Hazen, R. M., Prewitt, C. T., Angel, R. J., Ross, N. L., Finger, L. W., Hadidiacos, C. G., Veblen, D. R., Heaney, P. J., Hor, P. H., Meng, R. L., Sun, Y. Y., Wang, Y. Q., Xue, Y. Y., Huang, Z. J., Gao, L., Bechrhold, J., and Chu, C. W., Phys. Rev. Lett. 60, 1174 (1988).CrossRefGoogle Scholar
14Marshall, A. F., Oh, B., Spielman, S., Yee, M., Eom, C. B., Barton, R. W., Hammond, R. H., Kapitulnik, A., Beasky, M. R., and Geballe, J. H., Appl. Phys. Lett. 53, 426 (1988).CrossRefGoogle Scholar
15Tallon, J. L., Buckley, R. G., Gilbert, P. W., Presland, M. R., Brown, I. W. M., Bowden, M. E., Christian, L. A., and Gognel, R., Nature 333, 153 (1988).CrossRefGoogle Scholar
16Hirata, K., Kubo, Y., and Abe, Y., J. Mater. Res. 7, 48 (1992).CrossRefGoogle Scholar
17Niu, H., Fukushima, N., and Ando, K., Jpn. J. Appl. Phys. 27, L1442 (1988).CrossRefGoogle Scholar
18Nagano, H., Liang, R., Matsunaga, Y., Sugiyama, M., Itoh, M., and Nakamura, T., Jpn. J. Appl. Phys. 28, L364 (1989).CrossRefGoogle Scholar