Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T14:34:24.476Z Has data issue: false hasContentIssue false

Formation of Bulk Nanostructured Materials by Rapid Solidification

Published online by Cambridge University Press:  31 January 2011

W. H. Guo
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
L. F. Chua
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
C. C. Leung
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
H. W. Kui
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
Get access

Abstract

When a eutectic melt is undercooled below its liquidus T1 by a critical amount, it undergoes metastable liquid-state spinodal decomposition. The resulting morphologies can be described as intermixing undercooled liquid networks of characteristic wavelength λ. At a temperature substantially below T1, λ can be <100 nm. When λ ≤ 100 nm, the undercooled liquid networks break up into nanometer-size droplets/strips driven apparently by surface tension. The morphologies of the tiny droplets/strips can be frozen by subsequent crystallization. The as-crystallized specimen is a nanostructured material. It is microvoid free and the size of the constituent grains is rather uniform. Two systems, Pd40.5Ni40.5P19 and Pd82Si18, were chosen to illustrate the synthesis process.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gao, P. and Gleiter, H., Acta Metall. 35, 1571 (1987).CrossRefGoogle Scholar
2.Birringer, R., Gleiter, H., Klein, H.P., and Marhuart, P., Phys. Lett. A 102A, 365 (1984).CrossRefGoogle Scholar
3.Siegel, R.W., Ramassamy, S., Hahn, H., Li, Z., Lu, T., and Gronsky, R., J. Mater. Res. 3, 1376 (1988).CrossRefGoogle Scholar
4.Schneider, S., Thiyagarajan, P., and Johnson, W.L., Appl. Phys. Lett. 68, 493 (1996).CrossRefGoogle Scholar
5.Yuen, C.W., Lee, K.L., and Kui, H.W., J. Mater. Res. 12, 314 (1997).CrossRefGoogle Scholar
6.Yuen, C.W. and Kui, H.W., J. Mater. Res. 13, 3034 (1998).CrossRefGoogle Scholar
7.Lee, K.L. and Kui, H.W., J. Mater. Res. 14, 3653 (1999).CrossRefGoogle Scholar
8.Hong, S.Y., Guo, W.H., and Kui, H.W., J. Mater. Res. 14, 3668 (1999).CrossRefGoogle Scholar
9.Cahn, J.W., Trans. Met. Soc. AIME 242, 166 (1968).Google Scholar
10.Chen, H.S., Acta Metall. 22, 1505 (1974).CrossRefGoogle Scholar
11.Kui, H.W., Greer, A.L., and Turnbull, D., Appl. Phys. Lett. 45, 615 (1984).CrossRefGoogle Scholar
12.Lau, C.F. and Kui, H.W., J. Appl. Phys. 73, 2599 (1993).CrossRefGoogle Scholar
13.Guo, W.H., Leung, C.C., and Kui, H.W., in Bulk Metallic Glass, edited by Johnson, W.L., Inoue, A., and Liu, C.T. (Mater. Res. Soc. Symp. Proc. 554, Warrendale, PA, 1998), pp. 211216.Google Scholar
14.Yuen, C.W. and Kui, H.W., J. Mater. Res. 13, 3043 (1998).CrossRefGoogle Scholar
15.Guo, W.H. and Kui, H.W., Acta Mater. 48, 2117 (2000).CrossRefGoogle Scholar
16.Voller, V.R. (private communication).Google Scholar
17.Siegel, R.W., Annu. Rev. Mater. Sci. 21, 559 (1991)CrossRefGoogle Scholar