Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T03:37:00.306Z Has data issue: false hasContentIssue false

Formation of carbon nanostructures with Ge and SiC nanoparticles prepared by direct current and radio frequency hybrid arc discharge

Published online by Cambridge University Press:  31 January 2011

Takeo Oku
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567–0047, Japan
T. Hirata
Affiliation:
Graduate School of Engineering, Tohoku University, Sendai 980–8579, Japan
N. Motegi
Affiliation:
Graduate School of Engineering, Tohoku University, Sendai 980–8579, Japan
R. Hatakeyama
Affiliation:
Graduate School of Engineering, Tohoku University, Sendai 980–8579, Japan
N. Sato
Affiliation:
Graduate School of Engineering, Tohoku University, Sendai 980–8579, Japan
T. Mieno
Affiliation:
Department of Physics, Shizuoka University, Shizuoka 422–8017, Japan
N. Y. Sato
Affiliation:
Department of Electrical and Electronic Engineering, Ibaraki University, Hitachi 316-0033, Japan
H. Mase
Affiliation:
Department of Electrical and Electronic Engineering, Ibaraki University, Hitachi 316-0033, Japan
M. Niwano
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Sendai 980-0813, Japan
N. Miyamoto
Affiliation:
Department of Electrical Engineering, Tohoku Gakuin University, Tagajo 985-0873, Japan
Get access

Abstract

Carbon nanocage structures with Ge and SiC nanoparticles were synthesized by direct current and radio frequency (dc-rf) hybrid arc discharge of C, Ge, and Si elements. High-resolution images showed the formation of Ge and SiC nanoparticles and nanowires encapsulated in carbon nanocapsules and nanotubes. The growth direction of the Ge nanowires was found to be 〈111〉 of Ge, and a structure model for Ge/C interface was proposed. The present work indicates that the various carbon nanostructures with semiconductor nanoparticles and nanowires can be synthesized by the dc-rf hybrid arc-discharge method.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M., and Hayashi, T., Chem. Phys. Lett. 204, 277 (1993).CrossRefGoogle Scholar
2. Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Sumiyama, K., Suzuki, K., Kasuya, A., and Nisina, Y., J. Phys. Chem. Solid 54, 1849 (1993).CrossRefGoogle Scholar
3. Sloan, J., Cook, J., Green, M.L.H, Hutchinson, J.L., and Tenne, R., J. Mater. Chem. 7, 1089 (1997).CrossRefGoogle Scholar
4. Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S.R., and Tenne, R., Nature (London) 387, 791 (1997).CrossRefGoogle Scholar
5. Elliott, B.R., Host, J.J., Dravid, V.P., Teng, M.H., and Hwang, J-H., J. Mater. Res. 12, 3328 (1997).CrossRefGoogle Scholar
6. Oku, T., Niihira, K., and Suganuma, K., J. Mater. Chem. 8, 1323 (1998).CrossRefGoogle Scholar
7. Oku, T., Hirano, T., Nakajima, S., and Suganuma, K., J. Mater. Res. 14, 4266 (1999).CrossRefGoogle Scholar
8. Loiseau, A. and Pascard, H., Chem. Phys. Lett. 256, 246 (1996).CrossRefGoogle Scholar
9. Oku, T., Schmid, G., and Suganuma, K., J. Mater. Chem. 8, 2113 (1998).CrossRefGoogle Scholar
10. Oku, T., Sun, Q., Wang, D-S., Wang, Q., Kawazoe, Y., Schmid, G., and Suganuma, K., Mater. Trans. JIM 40, 1213 (1999).CrossRefGoogle Scholar
11. Zhao, W., Schoenfeld, O., Kusano, J., Aoyagi, Y., and Sugano, T., Jpn. J. Appl. Phys. 33, L899 (1994).CrossRefGoogle Scholar
12. Oku, T. and Nakajima, S., J. Mater. Res. 13, 1136 (1998).CrossRefGoogle Scholar
13. Oku, T., Carlsson, A., Wallenberg, L.R., Malm, J-O., Bovin, J-O., Higashi, I., Tanaka, T., and Ishizawa, Y., J. Solid State Chem. 135, 182 (1998).CrossRefGoogle Scholar
14. Oku, T. and Bovin, J-O., Philos. Mag. A 79, 821 (1999).CrossRefGoogle Scholar
15. Oku, T. and Nakajima, S., Appl. Phys. Lett. 75, 2226 (1999).CrossRefGoogle Scholar
16. Hatakeyama, R., Hirata, T., Ijiro, Y., Mieno, T., Sato, N.Y., Mase, H., Niwano, M., Miyamoto, N., and Sato, N., Proceedings of the 15th Symposium on Plasma Processing, Hamamatsu, Japan (1998) p. 470.Google Scholar
17. Hirata, T., Motegi, N., Hatakeyama, R., Oku, T., Mieno, T., Sato, N.Y., Mase, H., Niwano, M., Miyamoto, N., and Sato, N., Chem. Phys. Lett. (2000, submitted).Google Scholar
18. Cowley, J.M., Diffraction Physics, 2nd revised ed. (North-Holland, Amsterdam, The Netherlands, 1981).Google Scholar
19. Oku, T., Kubota, H., Ohgami, T., and Suganuma, K., Carbon 37, 1299 (1999).CrossRefGoogle Scholar
20. Scace, R.I. and Slack, G.A., J. Chem. Phys. 30, 1551 (1959).CrossRefGoogle Scholar