Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T04:49:09.345Z Has data issue: false hasContentIssue false

Formation of GaSb core-shell nanofibers by a thermally induced phase decomposition process

Published online by Cambridge University Press:  31 January 2011

Lumin Wang*
Affiliation:
Department of Nuclear Engineering and Radiological Sciences and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
Yanwen Zhang
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
*
a) Address all correspondence to this author. e-mail: lmwang@umich.edu
Get access

Abstract

Dense networks of amorphous GaSb nanofibers were fabricated by ion irradiation of bulk GaSb, and following formation, they were thermally annealed at a low temperature. Contrary to expectations, annealing of the GaSb fibers at just 50% of their melting temperature resulted in complete chemical decomposition of the nanofibers into core-shell structures consisting of crystalline Sb cores surrounded by amorphous shells. In this study, we investigate the transition of the single-phase nanofibers to their core-shell configuration, and we analyze the unique, temperature-dependent phase decomposition process. Thermodynamic considerations are discussed, and a model is presented to explain the thermally induced decomposition of the GaSb semiconductor fibers into core-shell structures, based upon the singular interaction of several size-dependent material properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Dutta, P.S., Bhat, H.L., and Kumar, V.: The physics and technology of gallium antimonide: An emerging optoelectronic material. J. Appl. Phys. 81, 5821 (1997).CrossRefGoogle Scholar
2Facsko, S., Dekorsy, T., Koerdt, C., Trappe, C., Kurz, H., Vogt, A., and Hartnagel, H.L.: Formation of ordered nanoscale semiconductor dots by ion sputtering. Science 285, 1551 (1999).CrossRefGoogle ScholarPubMed
3Bett, A.W., Dimroth, F., Stollwerck, G., and Sulima, O.V.: III-V compounds for solar cell applications. Appl. Phys. A 69, 119 (1999).Google Scholar
4Martín, D., Algora, C., Corregidor, V., and Datas, A.: Development of GaSb photoreceiver arrays for solar thermophotovoltaic systems. J. Sol. Energy Eng. 129, 283 (2007).CrossRefGoogle Scholar
5Callec, R., Favennec, P.N., Salvi, M., L'Haridon, H., and Gauneau, M.: Anomalous behavior of ion-implanted GaSb. Appl. Phys. Lett. 59, 1872 (1991).Google Scholar
6Callec, R. and Poudoulec, A.: Characteristics of implantationinduced damage in GaSb. J. Appl. Phys. 73, 4831 (1993).CrossRefGoogle Scholar
7Holland, O.W., Appleton, B.R., and Narayan, J.: Ion-implantation damage and annealing in germanium. J. Appl. Phys. 54, 2295 (1983).CrossRefGoogle Scholar
8Wang, L.M. and Birtcher, R.C.: Radiation-induced formation of cavities in amorphous germanium. Appl. Phys. Lett. 55, 2494 (1989).Google Scholar
9Destefanis, G.L. and Gailliard, J.P.: Very efficient void formation in ion implanted InSb. Appl. Phys. Lett. 36, 40 (1980).Google Scholar
10Destefanis, G.L., Belle, J.P., Ogier-Collin, J.M., and Gailliard, J.P.: Molecular effect in the expansion of ion implanted InSb. Nucl. Instrum. Methods Phys. Res., Sect. B 182/183, 637 (1981).Google Scholar
11Nitta, N., Taniwaki, M., Hayashi, Y., and Yoshiie, T.: Formation of cellular defect structure on GaSb ion-implanted at low temperature. J. Appl. Phys. 92, 1799 (2002).CrossRefGoogle Scholar
12Nitta, N. and Taniwaki, M.: Novel nano-fabrication technique utilizing ion beam. Nucl. Instrum. Methods Phys. Res., Sect. B 206, 482 (2003).CrossRefGoogle Scholar
13Perez-Bergquist, A.G., Zhu, S., Sun, K., Xiang, X., Zhang, Y.W., and Wang, L.M.: Embedded nanofibers induced by high energy ion irradiation of bulk GaSb. Small 4, 1119 (2008).CrossRefGoogle ScholarPubMed
14Nitta, N. and Taniwaki, M.: Development of nano-fabrication technique utilizing self-organizational behavior of point defects induced by ion irradiation. Physica B (Amsterdam) 376–377, 872 (2006).CrossRefGoogle Scholar
15Lugstein, A., Schoendorfer, C., Weil, M., Tomastik, C., Jauss, A., and Bertagnolli, E.: Study of focused ion beam response of GaSb. Nucl. Instrum. Methods Phys. Res., Sect. B 255, 309 (2007).CrossRefGoogle Scholar
16Stalmans, L., Poortmans, J., Bender, H., Caymax, M., Said, K., Vazsonyi, E., Nijs, J., and Mertens, R.: Porous silicon in crystalline silicon solar cells: A review and the effect on the internal quantum efficiency. Prog. Photovoltaics Res. Appl. 6, 233 (1998).Google Scholar
17Danilov, Y.A., Biryukov, A.A., Gonçalves, J.L., Swart, J.W., Iikawa, F., and Teschke, O.: Photoluminescence and the raman scattering in porous GaSb produced by ion implantation. Semiconductors 39, 145 (2005).CrossRefGoogle Scholar
18Cullis, A.G., Canham, L.T., and Calcott, P.D.J.: The structural and luminescence properties of porous silicon. J. Appl. Phys. 82, 909 (1997).CrossRefGoogle Scholar
19Nichols, F.A. and Mullins, W.W.: Surface- (interface-) and volumediffusion contributions to morphological changes driven by capillarity. Trans. Metal. Soc. AIME 233, 1840 (1965).Google Scholar
20Nouaoura, M., F.Da, W.O. Silva, Bertru, N., Rouanet, M., Tahraoui, A., Oueini, W., Bonnet, J., and Lassabatere, L.: Modification of GaSb (100) surfaces induced by annealing under vacuum and under Sb4 and As4 flux. J. Cryst. Growth 172, 37 (1997).Google Scholar
21Pearton, S.J., Von Neida, A.R., Brown, J.M., Short, K.T., Oster, L.J., and Chakrabarti, U.K.: Ion-implantation damage and annealing in InAs, GaSb, and GaP. J. Appl. Phys. 64, 629 (1988).CrossRefGoogle Scholar
22Kim, S.G., Asahi, H., Seta, M., Takizawa, J., Emura, S., Soni, R.K., Gonda, S., and Tanoue, H.: Raman scattering study of the recovery process in Ga ion implanted GaSb. J. Appl. Phys. 74, 579 (1993).Google Scholar
23Pawlow, P.Z.: The dependency of the melting point on the surface energy of a solid body. Phys. Chem. 65, 1 (1909).Google Scholar
24Takagi, M.: Electron-diffraction study of liquid-solid transition of thin metal films. J. Phys. Soc. Jpn. 9, 359 (1954).CrossRefGoogle Scholar
25Couchman, P.R. and Jesser, W.A.: Thermodynamic theory of size dependence of melting temperature in metals. Nature 269, 481 (1977).Google Scholar
26Weissmüller, J., Bunzel, P., and Wilde, G.: Two-phase equilibrium in small alloy particles. Scr. Mater. 51, 813 (2004).CrossRefGoogle Scholar
27Dias da Silva, J.H., Cisneros, J.I., Guraya, M.M., and Zampieri, G.: Effect of deviation from stoichiometry and thermal annealing on gallium antimonide films. Phys. Rev. B: Condens. Matter 51, 6272 (1995).CrossRefGoogle Scholar
28Wilde, G.: Nanostructures and nanocrystalline composite materials –Synthesis, stability and phase transformations. Surf. Interface Anal. 38, 1047 (2006).Google Scholar
29CRC Handbook of Chemistry and Physics, 87th ed., edited by Lide, D.R. (Taylor and Francis, New York, 2006), pp. 5–17.Google Scholar
30Bracht, H., Nicols, S.P., Walukiewicz, W., Silveira, J.P., Briones, F., and Haller, E.E.: Large disparity between gallium and antimony self-diffusion in gallium antimonide. Nature 408, 69 (2000).CrossRefGoogle ScholarPubMed
31Zinkevich, M. and Aldinger, F.: Thermodynamic assessment of the gallium-oxygen system. J. Am. Ceram. Soc. 87, 683 (2004).Google Scholar
32Binnewies, M. and Milke, E.: Thermochemical Data of Elements and Compounds, 2nd ed. (Wiley-VCH, Germany, 2002), pp. 5, 544, 545, 741, 827–829.CrossRefGoogle Scholar
33Azad, A.M., Pankajavalli, R., and Sreedharan, O.M.: Thermodynamic stability of Sb2O3 by a solid-oxide electrolyte e.m.f technique. J. Chem. Thermodyn. 18, 255 (1986).CrossRefGoogle Scholar
34Yasuda, H., Mori, H., and Lee, J.G.: Nonlinear responses of electronic-excitation-induced phase transformations in GaSb nanoparticles. Phys. Rev. Lett. 92, 135501 (2004).CrossRefGoogle ScholarPubMed
35Yasuda, H., Mori, H., and Lee, J.G.: Electron-irradiation-induced phase separation in GaSb nanoparticles. Phys. Rev. B: Condens. Matter 70, 214105 (2004).CrossRefGoogle Scholar