Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T07:55:56.000Z Has data issue: false hasContentIssue false

Formation of micro-mechanical interlocking sites by nanoscale sculpturing for composites or hybrid materials with stainless steel

Published online by Cambridge University Press:  29 October 2020

Chima Obobi Kalu
Affiliation:
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143Kiel, Germany
Mathias Hoppe
Affiliation:
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143Kiel, Germany
Iris Hölken
Affiliation:
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143Kiel, Germany Phi-Stone AG, Kaiserstr. 2, 24143Kiel, Germany
Melike Baytekin-Gerngross
Affiliation:
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143Kiel, Germany
Mark-Daniel Gerngross
Affiliation:
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143Kiel, Germany
Juergen Carstensen*
Affiliation:
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143Kiel, Germany
Rainer Adelung*
Affiliation:
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143Kiel, Germany
*
a)Address all correspondence to these authors. e-mail: jc@tf.uni-kiel.de
Get access

Abstract

The demands of modern materials are highly challenging as well as partially contradictory. For example, materials should be strong like steels but chemically inert like soft low-surface energy polymers. These conflicts can be overcome by effectively combining disparate materials in composites that allow fusing of the traditional material classes like ceramics, polymers, and metals. Such combinations require sufficient adhesion between the individual materials. If adhesion is based on mechanical interlocking, the chemistry and chemical compatibility of the individual materials play a negligible role for the adhesion, but the mechanical properties of the materials are exclusively important. This work focusses on a technologically relevant example of a micro-mechanical interlocking surface structure on grade 304 stainless steel (SST) by nanoscale sculpturing. Using a low aggressive/low toxic seawater-like and diluted HNO3-based electrolyte, the resulting structure is free from preferential grain-boundary etching. The sculptured surface is super hydrophilic with undercuts suitable for mechanical interlocking with polymers. In single-lap shear tests, different two-component adhesives failed cohesively on structured SST while showing more than a doubling of the ultimate shear strength compared to the state-of-the-art grit-blasted SST composites which only showed adhesive failure.

Type
Invited Feature Paper
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sun, Z., Tan, X., Tor, S.B., and Yeong, W.Y.: Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater. Des. 104, 197204 (2016). doi:10.1016/j.matdes.2016.05.035.CrossRefGoogle Scholar
Kim, W.S., Yun, I-H., Lee, J-J., and Jung, H-T.: Evaluation of mechanical interlock effect on adhesion strength of polymer–metal interfaces using micro-patterned surface topography. Int. J. Adhes. Adhes. 30, 408–41 (2010).CrossRefGoogle Scholar
Kinloch, A.J.: Adhesion and Adhesives. Science and Technology (Chapman and Hall, New York, 1987); pp. 56100.CrossRefGoogle Scholar
Packham, D.E.: Handbook of Adhesion (Longman Scientific & Technical, Chichester, UK, 1992); pp. 68190.Google Scholar
Pizzi, A. and Mittal, K.L.: Handbook of Adhesive Technology, 2nd ed. (Marcel Dekker, New York, 1994); pp. 2045, 46–50.Google Scholar
Pocius, A.V.: Adhesion and Adhesives Technology: An Introduction, 3rd ed. (Munich, Hanser, 2012); pp. 1108.CrossRefGoogle Scholar
Yacobia, B.G., Martin, S., Davis, K., Hudson, A., and Hubert, M.: Adhesive bonding in microelectronics and photonics. J. Appl. Phys. 91, 62276262 (2002).CrossRefGoogle Scholar
Wake, W.C.: Theories of adhesion and uses of adhesives: A review. Polymer 19, 291308 (1978).CrossRefGoogle Scholar
Baldan, A.: Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment. J. Mater. Sci. 39, 149 (2004).CrossRefGoogle Scholar
McBain, J.W. and Hopkins, D.G.: On adhesives and adhesive action. J. Phys. Chem. 2, 188204 (1925).CrossRefGoogle Scholar
Kinloch, A.J.: The science of adhesion. Part 1 Surface and interfacial aspects. J. Mater. Sci. 15, 21412166 (1980).CrossRefGoogle Scholar
Iribarren-Mateos, J.I., Buj-Corral, I., Vivancos-Calvet, J., Aleman, C., Iribarren, J.I., and Armelin, E.: Silane and epoxy coatings: A bilayer system to protect aa2024 alloy. Prog. Org. Coat. 81, 4757 (2015).CrossRefGoogle Scholar
Suzuki, N. and Ishida, H.: A review on the structure and characterization techniques of silane/matrix interphases. Macromol. Symp. 108, 1953 (1996).CrossRefGoogle Scholar
Licari, J.J. and Swanson, D.W.: Adhesives Technology for Electronic Applications, Chemistry, Formulation, and Properties of Adhesives, 2nd ed. (Elsevier, Norwich, United states, 2011); pp. 75141.CrossRefGoogle Scholar
Messler, R.W.: Joining of Materials and Structures (Elsevier, Oxford, 2004); pp. 534.Google Scholar
Baytekin-Gerngroß, M.: Nanoscale sculpturing of metals and its applications. Ph.D. dissertation, CAU Kiel, Kiel, Germany, 2018.Google Scholar
Harris, F. and Beevers, A.: Effects of grit-blasting on surface properties for adhesion. Int. J. Adhes. Adhes. 19, 445452 (1999).CrossRefGoogle Scholar
Molitor, P., Barron, V., and Young, T.: Surface treatment of titanium for adhesive bonding to polymer composites. Int. J. Adhes. Adhes. 21, 129136 (2001).CrossRefGoogle Scholar
Fernando, D., Teng, J.G., Yu, T., and Zhao, X.L.: Preparation and characterization of steel surfaces for adhesive bonding. J. Compos. Constr. 17, 04013012 (2013).CrossRefGoogle Scholar
Chun, H. and Mason, S.G.: Effect of roughness on wetting (theoretical). J. Colloid Interface Sci. 60, 1138 (1977).Google Scholar
Davis, M.J. and Bond, D.A.: The Importance of Failure Mode Identification in Adhesive Bonded Aircraft Structures and Repairs. Aircraft Structural Integrity Section, Directorate General of Technical Airworthiness, Royal Australian Air Force, Amberley Detachment, 501 Wing, RAAF Amberley 4306, Australia; RAAF Williams, Melbourne 3027, Australia, 2010.Google Scholar
Hart-Smith, L.J.: Effects of Flaws and Porosity on Strength of Adhesive-Bonded Joints. Douglas Aircraft Company Report MDC J4699, November 1981.Google Scholar
Li, J. and Xie, Y.: Comprehensive Improvement Technology Research on Marine Shot Blasting Machine (Atlantis Press, 2015); pp. 23525401.Google Scholar
Wegman, R.F.: Surface Preparation Technique for Adhesive Bonding (Noyes Publications, Oxford, 1985); pp. 6677.Google Scholar
Gerngross, M.D., Baytekin-Gerngross, M., Carstensen, J., and Adelung, R.: Self-organized growth of crystallographic macropores in multicrystalline Zn by nanoscale sculpturing. J. Electrochem. Soc. 165, H3099H3106 (2018).CrossRefGoogle Scholar
Baytekin-Gerngross, M., Gerngross, M.D., Carstensen, J., and Adelung, R.: Making metal surfaces strong, resistant, and multifunctional by nanoscale-sculpturing. Nanoscale Horiz. 1, 467 (2016).CrossRefGoogle ScholarPubMed
Wegman, R.F. and Van Twisk, J.: Surface Preparation Techniques for Adhesive Bonding (William Andrew, 2013). doi:10.1016/C2012-0-02158-8.Google Scholar
Baytekin-Gerngross, M., Gerngross, M.D., Carstensen, J., and Adelung, R.: Surface structuring of Ti-Al-V and Al-Mg alloys by chemical etching for advanced polymer adhesion. ECS Trans. 66, 1927 (2015).CrossRefGoogle Scholar
Baytekin-Gerngross, M., Gerngross, M.D., Carstensen, J., and Adelung, R.: Chemical sculpturing of Al micro-particles for polymer composites and universal polymer-polymer joints. ECS Trans. 75, 113122 (2016).CrossRefGoogle Scholar
Stöver, M., Renke-Gluszko, M., Schratzenstaller, T., Will, J., Klink, N., Behnisch, B., Kastrati, A., Wessely, R., Hausleiter, J., Schömig, A., and Wintermantel, E.: Microstructuring of stainless steel implants by electrochemical etching. J. Mater. Sci. 41, 55695575 (2006).CrossRefGoogle Scholar
Kleffel, T. and Drummer, D.: Investigating the suitability of roughness parameters to assess the bond strength of polymer-metal hybrid structures with mechanical adhesion. Compos. B 117, 2025 (2017).CrossRefGoogle Scholar
Lehmanna, V. and Rönnebeck, S.: The physics of macropore formation in low-doped p-type silicon. J. Electrochem. Soc. 146, 29682975 (1999).CrossRefGoogle Scholar
San Martina, D., Rivera Diaz del Castilloa, P.E.J., Peekstokb, E., and van der Zwaag, S.: A new etching route for revealing the austenite grain boundaries in an 11.4% Cr precipitation hardening semi-austenitic stainless steel. Mater. Charact. 58, 455460 (2007).CrossRefGoogle Scholar
Moore, J.W., Stanikski, C.L., and Jurs, P.C.: Chemistry: The Molecular Science, 4th ed. (Cengage Learning, Wadsworth, USA, 2010); pp. 398415.Google Scholar
Hölken, I., Hoppe, M., Mishra, Y.K., Gorb, S.N., Adelung, R., and Baum, M.J.: Complex shaped ZnO nano- and microstructure based polymer composites: Mechanically stable and environmentally friendly coatings for potential antifouling applications. Phys. Chem. Chem. Phys. 18, 71147123 (2016).CrossRefGoogle ScholarPubMed
Gapeeva, A., Hölken, I., Adelung, R., and Baum, M.: Characterization of a polydimethylsiloxane-polythiourethane polymer blend with potential as fouling-release coating. In 2017 IEEE 7th International Conference Nanomaterials, Application & Properties (NAP), Odessa, 2017.CrossRefGoogle Scholar