Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T21:10:30.961Z Has data issue: false hasContentIssue false

Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25

Published online by Cambridge University Press:  31 January 2011

D. V. Pugh
Affiliation:
Virginia Polytechnic Institute & State University, Department of Materials Science and Engineering, Blacksburg, Virginia 24061–0286
A. Dursun
Affiliation:
Virginia Polytechnic Institute & State University, Department of Materials Science and Engineering, Blacksburg, Virginia 24061–0286
S. G. Corcoran
Affiliation:
Virginia Polytechnic Institute & State University, Department of Materials Science and Engineering, Blacksburg, Virginia 24061–0286
Get access

Abstract

This paper gives results demonstrating the production of nanoporous platinum through the de-alloying of Cu0.75Pt0.25 alloy in 1 M H2SO4. Both field emission scanning electron microscopy and small angle neutron scattering confirm the presence of porosity with a diameter of approximately 3.4 nm. This is the smallest porosity quantitatively reported from a de-alloying process to date. The small size is attributed to the extremely small values of surface diffusivity expected for Pt at room temperature, effectively eliminating room-temperature coarsening processes. The results also show that larger length scales can be achieved through coarsening at elevated temperatures. The ease of production of porous platinum makes it attractive for possible applications, such as high surface area electrodes for biomedical devices or as catalyst materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Li, R. and Sieradzki, K., Phys. Rev. Lett. 68, 1168 (1992).CrossRefGoogle Scholar
2.Sieradzki, K., Dimitrov, N., Movrin, D., McCall, C., Vasiljevic, N., Erlebacher, J., J. Electrochem. Soc. 149, 370 (2002).CrossRefGoogle Scholar
3.Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., and Sieradzki, K., Nature 410, 450 (2001).CrossRefGoogle Scholar
4.Pickering, H. W., in Fundamental Aspects of Stress Corrosion Cracking, edited by Staehle, R.W., Forty, A.J., and Rooyen, D. van (NACE International, Ohio State University, 1967), pp. 159177.Google Scholar
5.Moffat, T.P., Fan, F-R.F., and Bard, A.J., J. Electrochem. Soc. 138, 3224 (1991).CrossRefGoogle Scholar
6.Fritz, J.D. and Pickering, H.W., J. Electrochem. Soc. 138, 3209 (1991).CrossRefGoogle Scholar
7.Ateya, B.G., Fritz, J.D., and Pickering, H.W., J. Electrochem. Soc. 144, 2606 (1997).CrossRefGoogle Scholar
8.Swann, P.R., Corrosion 25, 147 (1969).CrossRefGoogle Scholar
9.Pryor, M.J. and Fister, J.C., J. Electrochem. Soc. 131, 1230 (1984).CrossRefGoogle Scholar
10.Pickering, H.W. and Wagner, C., J. Electrochem. Soc. 114, 698 (1967).CrossRefGoogle Scholar
11.Abrams, R.B., Trans. Am. Chem. Soc. 42, 39 (1922).Google Scholar
12.Gardiazabal, J.I. and Galvele, J.R., J. Electrochem. Soc. 127, 255 (1980).CrossRefGoogle Scholar
13.Gardiazabal, J.I. and Galvele, J.R., J. Electrochem. Soc. 127, 259 (1980).CrossRefGoogle Scholar
14.Dursun, A., Pugh, D.V., and Corcoran, S.G., (unpublished).Google Scholar
15.Forty, A.J. and Durkin, P., Philos. Mag. A 42, 295 (1980).CrossRefGoogle Scholar
16.Kelly, R.G., Young, A.J., and Newman, R.C., in Electrochemical Impedance: Analysis and Interpretation, edited by Scully, J.R., Silverman, D.C., Kendig, M.W. (ASTM STP 1188, American Society for Testing and Materials, Philadelphia, PA 1993), pp. 94112.Google Scholar
17.Sieradzki, K., J. Electrochem. Soc. 140, 2868 (1993).CrossRefGoogle Scholar
18.Sieradzki, K., Corderman, R.R., Shukla, K., and Newman, R.C., Philos. Mag. A 59, 713 (1989).CrossRefGoogle Scholar
19.Corcoran, S.G., Sieradzki, K., and Wiesler, D., in Proceedings of the Symposium on Scattering for Materials Science II, edited by Neumann, D.A., Russell, T.P., and Wuensch, B.J. (Materials Research Society, Pittsburgh, PA, 1994), pp. 377382.aGoogle Scholar
20.Corcoran, S.G., Wiesler, D.G., and Sieradzki, K., in Electrochemical Synthesis and Modification of Materials, edited by Andricacos, P.C., Concoran, S.G., Delplanete, J-L., Moffat, T.P., and Searson, P.C. (Mater. Res. Soc. Symp. Proc. 451, Pittsburgh, PA, 1997), pp. 9398.Google Scholar
21.Corcoran, S.G., in Proceedings of the Symposium on Critical Factors in Localized Corrosion III, edited by Kelly, R.G., Frankel, G.S., Natishan, P.M., and Newman, R.C. (The Electrochemical Society, Pennington, NJ, 1999), pp. 500507.Google Scholar
22.Sieradzki, K. and Li, R. (unpublished).Google Scholar
23.Kabius, B., Kaiser, H., and Kaesche, H., in Surfaces, Inhibition, and Passivation: Proceedings of an International Symposium Honoring Doctor Norman Hackerman on His Seventy-fifth Birthday, edited by McCafferty, E., Brodd, R.J. (Electrochemical Society, Penington, NJ, 1986), pp. 562573.Google Scholar
24.Chen, G.Z., Fray, D.J., and Farthing, T.W., Nature 407, 361 (2000).CrossRefGoogle Scholar
25.Fray, D.J., MRS Bull. 25(12), 11 (2000).Google Scholar
26.Sieradzki, K. and Newman, R.C., Philos. Mag. A 51, 95 (1985).CrossRefGoogle Scholar
27.Newman, R.C., Corderman, R.R., and Sieradzki, K., Brit. Corrosion J. 24, 143 (1989).CrossRefGoogle Scholar
28.Williams, D.E., Newman, R.C., Song, Q., and Kelly, R.G., Nature 350, 216 (1991).CrossRefGoogle Scholar
29.Pickering, H.W., Corrosion Sci. 23, 1107 (1983).CrossRefGoogle Scholar
30.Chen, J.S., Salmeron, M., and Devine, T.M., Corrosion Science. 34, 2071 (1993).CrossRefGoogle Scholar
31.Cassagne, T.B., Flanagan, W.F., and Lichter, B.D., Metall. Trans. A 17A, 703 (1986).CrossRefGoogle Scholar
32.Dimitrov, N., Mann, J.A., Vukmirovic, M., and Sieradzki, K., J. Electrochem. Soc. 147, 3283 (2000).CrossRefGoogle Scholar
33.Buchheit, R.G., Grant, R.P., Hlava, P.F., McKenzie, B., Zender, G.L., J. Electrochem. Soc. 144, 2621 (1997).CrossRefGoogle Scholar
34.Newman, R.C. and Mehta, A., Corrosion Sci. 28, 1183 (1988).CrossRefGoogle Scholar
35.Tomsett, A.D., Curry-Hyde, H.E., Wainwright, M.S., Young, D.J., Bridgewater, A.J., Appl. Catal. 33, 119 (1987).CrossRefGoogle Scholar
36.Smith, A.J., Tran, T., and Wainwright, M.S., J. Appl. Electrochem. 29, 1085 (1999).CrossRefGoogle Scholar
37.Tomsett, A.D., Young, D.J., Stammbach, M.R., and Wainwright, M.S., J. Mater. Sci. 25, 4106 (1990).CrossRefGoogle Scholar
38.Simmonds, M.C., Kheyrandish, H., Colligon, J.S., Hitchman, M.L., Cade, N., and Iredale, J., Corrosion Sci. 40, 43 (1998).CrossRefGoogle Scholar
39.Pickering, H.W. and Kim, Y.S., Corrosion Sci. 22, 621 (1982).CrossRefGoogle Scholar
40.Sieradzki, K. and Newman, R.C., J. Phys. Chem. Solids 48, 1101 (1987).CrossRefGoogle Scholar
41.Tischer, R.P. and Gerischer, H., Zeitschrift fur Elektrochemie Berichte Der Bunsengesellschaft fur Physikalische Chemie (in German) 62, 50 (1958).CrossRefGoogle Scholar
42.Pugh, D.V., Dursun, A., and Corcoran, S.G. (unpublished).Google Scholar
43.Agamalian, M., Wignall, G.D., and Triolo, R., J. Appl. Crystallogr. 30, 345 (1997).CrossRefGoogle Scholar
44.Corcoran, S.G. (unpublished, 2002).Google Scholar
45.Teubner, M. and Strey, R., AIP 5, 3195 (1987).Google Scholar
46.Berk, N.F., PRA 44, 5069 (1991).CrossRefGoogle Scholar
47.Berk, N.F., PRL 58, 2718 (1987).CrossRefGoogle Scholar
48.Chen, S.H., Chang, S.L., and Strey, R., Prog. Colloid Polym. Sci. 81, 30 (1990).CrossRefGoogle Scholar
49.Chen, S-H. and Chang, S-L., J. Appl. Crystall. 24, 721 (1991).CrossRefGoogle Scholar
50.Cahn, J.W., J. Chem. Phys. 42, 93 (1965).CrossRefGoogle Scholar