Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T16:10:54.116Z Has data issue: false hasContentIssue false

Formation rule for Al-based ternary quasi-crystals: Example of Al–Ni–Fe decagonal phase

Published online by Cambridge University Press:  31 January 2011

Jian-Bing Qiang
Affiliation:
State Key Laboratory for Materials Modification by Laser, Ion and Electron Beams, Department of Materials Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
De-He Wang
Affiliation:
State Key Laboratory for Materials Modification by Laser, Ion and Electron Beams, Department of Materials Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
Cui-Min Bao
Affiliation:
State Key Laboratory for Materials Modification by Laser, Ion and Electron Beams, Department of Materials Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
Ying-Min Wang
Affiliation:
State Key Laboratory for Materials Modification by Laser, Ion and Electron Beams, Department of Materials Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
Wei-Ping Xu
Affiliation:
State Key Laboratory for Materials Modification by Laser, Ion and Electron Beams, Department of Materials Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
Mei-Li Song
Affiliation:
State Key Laboratory for Materials Modification by Laser, Ion and Electron Beams, Department of Materials Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
Chuang Dong*
Affiliation:
State Key Laboratory for Materials Modification by Laser, Ion and Electron Beams, Department of Materials Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
*
a)Address all correspondence to this author.dong@dlut.edu.cn
Get access

Abstract

After examining ternary Al-based quasi-crystalline phase diagrams, we pointed out that the presence of e/a-constant and e/a-variant lines is a common phenomenon. Ternary quasi-crystal compositions are located at the crossing point of these lines in ternary phase diagrams. Such an empirical rule can be used to predict the ternary quasi-crystal compositions from binary ones. We applied this rule to the Al–Fe–Ni system and clarified the decagonal phase composition zone. There are two decagonal phases, D-Al72.5Fe14.5Ni13 and D′-Al705Fe12Ni17.5, that correspond respectively to Al–Fe-based and Al–Ni-based decagonal phases in the same ternary system.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Friedel, J. and Denoyer, F., C. R. Acad. Sci. Paris 305, 171 (1987).Google Scholar
2Dong, C., Perrot, A., Dubois, J.M., and Belin, E., Mater. Sci. Forum 150–151, 403 (1994).CrossRefGoogle Scholar
3Dong, C., Scripta Materialia 33, 239 (1995).CrossRefGoogle Scholar
4Dong, C., Bao, C.M., Qiang, J.B., Wang, D.H., and Wang, Y.M. (unpublished).Google Scholar
5Janot, C., Quasicrystals (Oxford University Press. New York, 1994).Google ScholarPubMed
6Faudot, F., Quivy, A., Calvayrac, Y., Gratias, D., and Harmelin, M., Mater. Sci. Eng. A133,383 (1991).CrossRefGoogle Scholar
7Feng, K.K., Yang, C.Y., Zhou, Y.Q., Zhao, J.G., Zhan, W.S., and Shen, B.G., Phys. Rev. Lett. 56, 2060 (1986).CrossRefGoogle Scholar
8Gratias, D., Calvayrac, Y., J. Devautd-Rzepski, Faudot, F., Harmelin, M., Quivy, A., and Bancel, P.A., J. Non-Cryst. Solids 153–154, 482 (1993).CrossRefGoogle Scholar
9Letzig, D., Klöwer, J., and Sauthoff, Z. Gerhard, Metallkd. 90, 712 (1999).Google Scholar
10Mekhrabov, A.O. and Akdeniz, M.V., Acta Mater. 34, 325 (1999).Google Scholar
11Dunlap, R.A., Philos. Mag. B67, 69 (1993).CrossRefGoogle Scholar
12Saito, M., Tanaka, M., Tsai, A.P., Inoue, A., and Masumoto, T., Jpn. J. Appl. Phys. 31, L109 (1992).CrossRefGoogle Scholar
13Tanaka, M., Tsuda, K., Terauchi, M., Fujiwara, A., Tsai, A.P., Inoue, A., and Masumoto, T., J. Non-Cryst. Solids 153–154, 98 (1993).CrossRefGoogle Scholar
14Tsai, A.P., Inoue, A., and Masumoto, T., Mater. Trans. JIM 30, 150 (1989).CrossRefGoogle Scholar
15Horio, Y., Inoue, A., and Masumoto, T., Mater. Sci. Eng. A179–180, 596 (1994).CrossRefGoogle Scholar
16Lemmerz, U., Grushko, B., Freiburg, C., and Jansen, M., Philos. Mag. Lett. 69, 141 (1994).CrossRefGoogle Scholar
17Rivlin, V.G. and Raynor, G.V., Int. Met. Rev. 25, 79 (1980).Google Scholar
18Khaidar, M., Allibert, C.H., and Driole, J., Z. Metallkd. 73, 433 (1982).Google Scholar
19Ellner, M. and Röhrer, T., Z. Metallkd. 81, 847 (1990).Google Scholar
20Li, X.Z. and Kuo, K.H., Philos. Mag. Lett. 58, 167 (1988).CrossRefGoogle Scholar
21Pohla, C. and Ryder, P.L., Acta Mater. 45, 2155 (1997).CrossRefGoogle Scholar
22Hiraga, K., Yubuta, K., and Park, K.T., J. Mater. Res. 11, 1702 (1996).CrossRefGoogle Scholar
23Taylor, W.H., Acta Metallurgica 2, 684 (1954).CrossRefGoogle Scholar
24Li, X.Z., Yu, R.C., Kuo, K.H., and Hiraga, K., Philos. Mag. Lett. 73, 255 (1996).CrossRefGoogle Scholar
25Ishihara, K.N. and Yamamoto, A., Acta Crystallogr. A44, 508 (1988).CrossRefGoogle Scholar
26Villars, P. and Calvert, L.D., Pearson's Handbook of Crystallo-graphic Data for Intermetallic Phase (AEM, Metals Park, OH, 1985).Google Scholar
27Dong, C., J. Phys. I France 5, 625 (1995).CrossRefGoogle Scholar
28Grushko, B. and Holland-Moritz, D., Scripta Materialia 35, 1141 (1996).CrossRefGoogle Scholar
29Yamamoto, A. and Ishihara, K.N., Acta Crystallogr. A44, 707 (1988).CrossRefGoogle Scholar
30Idziak, S., Heiney, P.A., and Bancel, P.A., Mater. Sci. Forum 22–24, 353 (1987).CrossRefGoogle Scholar
31Tsai, A.P., Inoue, A., and Masumoto, T., Philos. Mag. Lett. 71, 161 (1995).CrossRefGoogle Scholar