Hostname: page-component-5f745c7db-hj587 Total loading time: 0 Render date: 2025-01-06T23:33:04.614Z Has data issue: true hasContentIssue false

Fractal aggregates of lanthanide-doped Y2O3 nanoparticles obtained by propellant synthesis

Published online by Cambridge University Press:  31 January 2011

Stefano Polizzi
Affiliation:
Dipartimento di Chimica Fisica, Universita ‘di Venezia, D.D. 2137, 30123 Venezia, Italy
Giuliano Fagherazzi
Affiliation:
Dipartimento di Chimica Fisica, Universita ‘di Venezia, D.D. 2137, 30123 Venezia, Italy
Marino Battagliarin
Affiliation:
Dipartimento Scientifico e Tecnologico, Universita ‘di Verona, Ca'Vignal, Strada le Grazie 15, 37134 Verona, Italy
Marco Bettinelli
Affiliation:
Dipartimento Scientifico e Tecnologico, Universita ‘di Verona, Ca'Vignal, Strada le Grazie 15, 37134 Verona, Italy
Adolfo Speghini
Affiliation:
Dipartimento Scientifico e Tecnologico, Universita ‘di Verona, Ca'Vignal, Strada le Grazie 15, 37134 Verona, Italy
Get access

Abstract

Y2-xLnxO3 (Ln 4 Ce, Pr, Nd, Eu, Gd, Ho, and Er) powders obtained by propellant synthesis have been characterized using small-angle x-ray scattering, wide-angle x-ray scattering, and transmission and scanning electron microscopy. All the samples showed a very porous, open microstructure with fractal scaling properties. The building blocks of the fractal aggregates are nanocrystallites of lanthanide-doped Y2O3, with variations in the cubic lattice constant proportional to the composition of the solid solution and to the lanthanide ionic radius. The particles had a narrow distribution of sizes with an average value in the 20–50 nm range. They are made of a core of 10–20 nm, consisting of almost perfectly ordered crystals and a “fuzzy” layer, characterized by either a growing lattice disorder or by a compositional gradient. From this dimension, up to at least 200 nm, the particle aggregate is a mass fractal with a fractal dimension, DMf, in the 1.6–2.0 range.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Roy, S., Sigmund, W., and Aldinger, F., J. Mater. Res. 14, 1524 (1999).Google Scholar
2.Blasse, G. and Grabmaier, B.C., Luminescent Materials (Springer-Verlag, Berlin, Germany, 1994).CrossRefGoogle Scholar
3.Guyot, Y., Moncorgé, R., Merkle, L.D., Pinto, A., McIntosh, B., and Verdun, H., Opt. Mater. 5, 127 (1996).CrossRefGoogle Scholar
4.Ermeneux, F.S., Goutaudier, C., Moncorgé, R., Cohen-Adad, M.T., Bettinelli, M., and Cavalli, E., Opt. Mater. 8, 83 (1997).CrossRefGoogle Scholar
5.Antic, B., Mitric, M., and Rodic, D., J. Magn. Magn. Mater. 145, 349 (1995).CrossRefGoogle Scholar
6.Cavani, F. and Trifirò, F., Catal. Today 51, 561 (1999).CrossRefGoogle Scholar
7.Dai, H.X., Liu, Y.W., Ng, C.F., and Au, C.T., J. Catal. 187, 59 (1999).CrossRefGoogle Scholar
8.Goldburt, E.T., Kulkarni, B., Bhargava, R.N., Taylor, J., and Libera, M., Lumin, J.. 72–74, 190 (1997).Google Scholar
9.Tissue, B.M., Chem. Mater. 10, 2837 (1998).Google Scholar
10.Tessari, G., Bettinelli, M., Speghini, A., Ajo, D., Pozza, G., Depero, L.E., Allieri, B., and Sangaletti, L., Appl. Surf. Sci. 144–145, 686 (1999).CrossRefGoogle Scholar
11.Mitric, M., Kremenovic, A., Dimitrijevic, R., and Rodic, R., Solid State Ionics 101, 495 (1997).Google Scholar
12.Fagherazzi, G., Polizzi, S., Bettinelli, M., and Speghini, A., J. Mater. Res. 15, 586 (2000).CrossRefGoogle Scholar
13.Ekambaram, S. and Patil, K.C., J. Mater. Chem. 5 (6), 905 (1995).Google Scholar
14.Ye, T., Guiwen, Z., Weiping, Z., and Shangda, X., Mater. Res. Bull. 32, 501 (1997).Google Scholar
15.Sharma, P.K., Nass, R., and Schmidt, H., Opt. Mater. 10, 161 (1998).CrossRefGoogle Scholar
16.Wagner, C.N.J., in Local Atomic Arrangements Studied by X-ray Diffraction, edited by Cohen, J.B. and Hilliard, J.E.. (Met. Soc. Conf. 36, Gordon & Breach, New York, 1966), p. 219.Google Scholar
17.Adler, R.P.I. and Wagner, C.N.J., J. Appl. Phys. 33, 3451 (1962).CrossRefGoogle Scholar
18.Enzo, S., Polizzi, S., and Benedetti, A., Zeit. Kristallogr. 170, 275 (1985).Google Scholar
19.Benedetti, A., Fagherazzi, G., Enzo, S., and Battagliarin, M., J. Appl. Crystallogr. 21, 543 (1988).CrossRefGoogle Scholar
20.Warren, B.E. and Averbach, B.L., J. Appl. Phys. 21, 595 (1950).Google Scholar
21.Warren, B.E. and Averbach, B.L., J. Appl. Phys. 23, 497 (1952).CrossRefGoogle Scholar
22.Du Mond, J.W.M., Phys. Rev. 72, 83 (1947).CrossRefGoogle Scholar
23.Guinier, A. and Fournet, G., Small-Angle Scattering of X-rays (Wiley, New York, 1955), pp. 116117.Google Scholar
24.Guinier, A., Compt. Rend. 208, 894 (1939).Google Scholar
25.Guinier, P. and Fournet, G., Small-Angle Scattering of X-rays (Wiley, New York, 1955), p. 25.Google Scholar
26.Beaucage, G., J. Appl. Crystallogr. 28, 717 (1995).Google Scholar
27.Beaucage, G., Ulibarri, T.A., Black, E.P., and Schaefer, D.W., in Hybrid Organic-Inorganic Composites, edited by Mark, J.E., Lee, C.Y., and Bianconi, P.A. (ACS Symposium Series 585, American Chemical Society, Washington, DC, 1995), pp. 97111.Google Scholar
28.Handbook of Physics and Chemistry, 78th ed., edited by Lide, D.R. (CRC Press, Boca Raton, FL, 1998), p. 4121.Google Scholar
29. Powder Diffraction File, Card No. 43–1036, JCPDS International Centre for Diffraction Data, Swarthmore, PA (1994).Google Scholar
30.Tandon, P. and Rosner, D.E., Chem. Eng. Commun. 131, 147 (1996).CrossRefGoogle Scholar
31.Martin, J.D. and Hurd, A.J., J. Appl. Crystallogr. 20, 61 (1987).Google Scholar
32.Schimidt, P.W., Avnir, D., Levy, D., Höhr, A., Steiner, M., and Röll, A., J. Chem. Phys. 28, 717 (1995).Google Scholar
33.Benedetti, A. and Ciccariello, S., J. Appl. Crystallogr. 27, 249 (1994).Google Scholar
34.Capobianco, J.A., Vetrone, F., D’Alesio, T., Tessari, G., Speghini, A., and Bettinelli, M., Phys. Chem. Chem. Phys. 2, 3203 (2000).CrossRefGoogle Scholar