Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T08:06:13.389Z Has data issue: false hasContentIssue false

Fracture behavior of Zr55Cu30Al10Ni5 bulk metallic glass under quasi-static and dynamic compression

Published online by Cambridge University Press:  31 January 2011

R.Q. Yang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
J.T. Fan
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
S.X. Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Z.F. Zhang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: zhfzhang@imr.ac.cn
Get access

Abstract

Fracture behavior of Zr55Cu30Al10Ni5 bulk metallic glass was investigated under quasi-static compression at strain rate of 10−4/s using an Instron testing machine and dynamic split Hopkinson bar (SHPB) compression with strain rate of about 1900–4300/s. Pronounced strain softening, especially past the peak stress, was observed under SHPB tests and compared with the distinct flow serrations under quasi-static tests. Scanning electron microscope revealed that the angle between the loading axis and major shear plane is less than 45°, deviating from the maximum shear stress plane. Microscopically, unlike the ordinary veinlike pattern found in quasi-static compression, the elongated veinlike pattern was observed at the onset position of rapid shearing under dynamic test. A closely arrayed dendritelike structure dominated the dynamic fracture, consequently, and should be the major pattern representing the rapid shear band propagation. In addition, a transition state from veinlike to dendritelike pattern was observed at the final instantaneous fracture region in quasi-static tests. Evidence revealed the characteristic dimension of dynamic fracture surface complies with Taylor’s meniscus instability criterion. The roles of free volume and adiabatic heating on the fracture strength and stress concentration on the fracture morphology are also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zhang, T., Inoue, A.Masumoto, T.: Amorphous Zr–Al–Tm (Tm = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K. Mater. Trans., JIM 32, 1005 1991Google Scholar
2Peker, A.Johnson, W.L.: A highly processable metallic glass Zr41.2Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett. 63, 2342 1993Google Scholar
3Inoue, A., Ohtera, K., Kohinata, M., Tsai, A-P.Masumoto, T.: Glass transition behavior of Al- and Mg-based amorphous alloys. J. Non-Cryst. Solids 117, 712 1990CrossRefGoogle Scholar
4Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 1999CrossRefGoogle Scholar
5Argon, A.S.Salama, A.: The mechanism of fracture in glassy matrials capable of some inelastic deformation. Mater. Sci. Eng. 23, 219 1976CrossRefGoogle Scholar
6Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 1977Google Scholar
7Leamy, H.J., Wang, T.T.Chen, H.S.: Plastic flow and fracture of metallic glass. Metall. Mater. Trans. 3, 699 1972Google Scholar
8Donovan, P.E.: A yield criterion for Pd40Ni40P20 metallic glass. Acta Metall. 37, 445 1989Google Scholar
9Johnson, W.L.: Fundamental aspects of bulk metallic glass formation in multicomponent alloys. Mater. Sci. Forum 225, 35 1996CrossRefGoogle Scholar
10Lowhaphandu, P., Montgomery, S.L.Lewandowski, J.J.: Effects of superimposed hydrostatic pressure on flow and fracture of Zr–Ti–Ni–Cu–Be bulk metallic glass. Scripta Metall. Mater. 41, 19 1999Google Scholar
11Lowhaphandu, P., Ludrosky, L.A., Montgomery, S.L.Lewandowski, J.J.: Deformation and fracture toughness of a bulk amorphous Zr–Ti–Ni–Cu–Be alloy. Intermetallics 8, 487 2000Google Scholar
12Lewandowski, J.J.Lowhaphandu, P.: Pressure effects on flow and fracture of a bulk amorphous Zr–Ti–Ni–Cu–Be alloy. Philos. Mag. A 82, 3427 2002Google Scholar
13Wang, W.H., Dong, C.Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 2004Google Scholar
14Gilbert, C.J., Ritchie, R.O.Johnson, W.L.: Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Appl. Phys. Lett. 71, 476 1997CrossRefGoogle Scholar
15Lowhaphandu, P.Lewandowski, J.J.: Fracture toughness and notched toughness of bulk amorphous alloy: Zr–Ti–Ni–Cu–Be. Scripta Mater. 38, 1811 1998Google Scholar
16Nagendra, N., Ramamurty, U., Goh, T.T.Li, Y.: Effect of crystallinity on the impact toughness of a La-based bulk metallic glass. Acta Mater. 48, 2603 2000Google Scholar
17Lewandowski, J.J., Wang, W.H.Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 2005Google Scholar
18Bruck, H.A., Rosakis, A.J.Johnson, W.L.: The dynamic compressive behavior of beryllium bearing bulk metallic glasses. J. Mater. Res. 11, 503 1996Google Scholar
19Subhash, G., Dowding, R.J.Kecskes, L.J.: Characterization of uniaxial compressive response of bulk amorphous Zr–Ti–Cu– Ni–Be alloy. Mater. Sci. Eng., A 334, 33 2002Google Scholar
20Lu, J., Ravichandran, G.Johnson, W.L.: Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429 2003Google Scholar
21Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A.Higashi, K.: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 2002Google Scholar
22Hufnagel, T.C., Jiao, T., Li, Y., Xing, L.Q.Ramesh, K.T.: Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. J. Mater. Res. 17, 1441 2002Google Scholar
23Li, H., Subhash, G., Gao, X.L., Kecskes, L.J.Dowding, R.J.: Negative strain rate sensitivity and compositional dependence of fracture strength in Zr/Hf based bulk metallic glasses. Scripta Mater. 49, 1087 2003Google Scholar
24Gu, X., Jiao, T., Kecskes, L.J., Woodman, R.H., Fan, C., Ramesh, K.T.Hufnagel, T.C.: Crystallization and mechanical behavior of (Hf, Zr)–Ti–Cu–Ni–Al metallic glasses. J. Non-Cryst. Solids 317, 112 2003Google Scholar
25Liu, L.F., Dai, L.H., Bai, Y.L., Wei, B.C.Yu, G.S.: Strain rate-dependent compressive deformation behavior of Nd-based bulk metallic glass. Intermetallics 13, 827 2005Google Scholar
26Sunny, G., Lewandowski, J.J.Prakash, V.: Effects of annealing and specimen geometry on dynamic compression of a Zr-based bulk metallic glass. J. Mater. Res. 22, 389 2007CrossRefGoogle Scholar
27Zhuang, S., Lu, J.Ravichandran, G.: Shock wave response of a zirconium-based bulk metallic glass and its composite. Appl. Phys. Lett. 80, 4522 2002CrossRefGoogle Scholar
28Yuan, F., Prakash, V.Lewandowski, J.J.: Spall strength and Hugoniot elastic limit of a Zr-based BMG under planar shock compression. J. Mater. Res. 22, 402 2007Google Scholar
29Follansbee, P.S.: The Hopkinson bar in Metals Handbook, 9th ed., Mechanical Testing American Society for Metals Metals Park, OH 1985 198Google Scholar
30Wright, W.J., Schwarz, R.B.Nix, W.D.: Localized heating during serrated plastic flow in bulk metallic glasses. Mater. Sci. Eng., A 319, 229 2001CrossRefGoogle Scholar
31Follansbee, P.S.Kocks, U.F.: A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall. 36, 81 1988Google Scholar
32Schulze, V.Vöhringer, O.: Influence of alloying elements on the strain rate and temperature dependence of the flow stress of steels. Metall. Mater. Trans. A 31, 825 2000Google Scholar
33Bhowmick, R., Raghavan, R., Chattopadhyay, K.Ramamurty, U.: Plastic flow softening in a bulk metallic glass. Acta Mater. 54, 4221 2006Google Scholar
34Gilbert, C.J., Ager, J.W. III, Schroeder, V.Ritchiea, R.O.: Light emission during fracture of a Zr–Ti–Ni–Cu–Be bulk metallic glass. Appl. Phys. Lett. 74, 3809 1999Google Scholar
35Lewandowski, J.J.Greer, A.L.: Temperature rise at shear bands in metallic Glasses. Nat. Mater. 5, 15 2006Google Scholar
36Zhang, Z.F., Eckert, J.Schultz, L.: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 2003Google Scholar
37Zhang, Z.F., He, G., Eckert, J.Schultz, L.: Fracture mechanisms in bulk metallic glassy materials. Phys. Rev. Lett. 91, 045505 2003Google Scholar
38Zhang, Z.F.Eckert, J.: Unified tensile fracture criterion. Phys. Rev. Lett. 94, 094301 2005Google Scholar
39Pampillo, C.A.: Flow and fracture in amorphous alloys. J. Mater. Sci. 10, 1194 1975Google Scholar
40Bengus, V.Z., Tabachnikova, E.D., Miškuf, J., Csach, K., Ocelik, V., Johnson, W.L., Molokanov, V.V.: New features of the low temperature ductile shear failure observed in bulk amorphous alloys. J. Mater. Sci. 35, 4449 2000CrossRefGoogle Scholar
41Davis, L.A.: Plastic instability in a metallic glass. Scripta Metall. 9, 339 1975Google Scholar