Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T03:28:42.574Z Has data issue: false hasContentIssue false

Fracture mode of alumina/silicon carbide nanocomposites

Published online by Cambridge University Press:  31 January 2011

André Zimmermann
Affiliation:
Darmstadt University of Technology, Department of Materials Science, Petersenstrasse 23, 64287 Darmstadt, Germany
Mark Hoffman
Affiliation:
University of New South Wales, School of Materials Science and Engineering, Sydney, NSW 2052, Australia
Jürgen Rödel
Affiliation:
Darmstadt University of Technology, Department of Materials Science, Petersenstrasse 23, 64287 Darmstadt, Germany
Get access

Extract

Computer simulations have been designed to elucidate the evolution of microcracking in a nanocomposite using appropriate material values for alumina and silicon carbide. These are compared to a single-phase material using elastic and thermal expansion coefficients for alumina. It is found that the region and the fracture mode where microcracking ensues are determined by the intensity and the length scale of the residual stress fields, which interact. Of specific interest are the region, fracture mode, and length of ensuing microcracks for materials with different inclusion locations (at the grain boundary or within the grain) and with different grain size to inclusion size ratios.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bennison, S.J. and Lawn, B.R., Acta Metall. 37, 2659 (1989).CrossRefGoogle Scholar
2.Zimmermann, A. and Rödel, J., J. Am. Ceram. Soc. 81, 2527 (1998).CrossRefGoogle Scholar
3.Lange, F.F., J. Am. Ceram. Soc. 72, 3 (1989).CrossRefGoogle Scholar
4.Ramachandran, N. and Shetty, D.K., J. Am. Ceram. Soc. 74, 2634 (1991).CrossRefGoogle Scholar
5.Niihara, K., J. Ceram. Soc. Jpn. 99, 974 (1991).CrossRefGoogle Scholar
6.Sternitzke, M., J. Eur. Ceram. Soc. 17, 1061 (1997).CrossRefGoogle Scholar
7.Stearns, L.C. and Harmer, M.P., J. Am. Ceram. Soc. 79, 3013 (1996).CrossRefGoogle Scholar
8.Zhao, J., Stearns, L.C., Harmer, M.P., Chan, H.M., Miller, G.A., and Cook, R.F., J. Am. Ceram. Soc. 76, 503 (1993).CrossRefGoogle Scholar
9.Hoffman, M. and Rödel, J., J. Am. Ceram. Soc. Jpn. 105, 1086 (1997).CrossRefGoogle Scholar
10.Levin, I., Kaplan, W.D., Brandon, D.G., and Layyous, A.A., J. Am. Ceram. Soc. 78, 254 (1995).CrossRefGoogle Scholar
11.Pezzotti, G., Sergio, V., Ota, K., Sbaizero, O., Muraki, N., Nishida, T., and Sakai, M., J. Ceram. Soc. Jpn. 104, 497 (1996).CrossRefGoogle Scholar
12.Todd, R., Bourke, M., Borsa, C., and Brook, R., Acta Mater. 45, 1791 (1997).CrossRefGoogle Scholar
13.Perez-Rigueiro, J., Pastor, J.Y., Llorca, J., Elices, M., Miranzo, P., and Moya, J.S., Acta Mater. 46, 5399 (1998).CrossRefGoogle Scholar
14.Carroll, L., Sternitzke, M., and Derby, B., Acta Metall. Mater. 44, 4543 (1996).CrossRefGoogle Scholar
15.Xu, Y., Zangvil, A., and Kerber, A., J. Eur. Ceram. Soc. 17, 921 (1997).CrossRefGoogle Scholar
16.Zimmermann, A., Carter, W.C., and Fuller, E.R. Jr., (unpublished).Google Scholar
17.Sridhar, N., Yang, W., Srolovitz, D.J., and Fuller, E.R. Jr., J. Am. Ceram. Soc. 77, 1123 (1994).CrossRefGoogle Scholar
18.Anderson, M.P., Srolovitz, D.J., Sahni, P.S., and Grest, G.S., Acta Metall. 32, 793 (1984).CrossRefGoogle Scholar
19.Hoffman, M., Rödel, J., Sternitzke, M., and Brook, R., in Fracture Mechanics of Ceramics, edited by Bradt, R.C., Hasselman, D.P.H, Munz, D., Sakai, M. and Shevchenko, V.Y. (Plenum Press, New York, 1996), Vol. 12 p. 179.CrossRefGoogle Scholar
20.Grest, G.S., Anderson, M.P., and Srolovitz, D.J., Philos. Mag. B 59, 293 (1988).Google Scholar
21.Wachtman, J.B. Jr., Tefft, W.E., Lam, D.G. Jr., and Stinchfield, R.P., J. Res. Natl. Bur. Stand. (U.S.) 43, 213 (1960).CrossRefGoogle Scholar
22.Kreher, W. and Pompe, W., Internal Stresses in Heterogeneous Solids (Akademie-Verlag, Berlin, 1989).Google Scholar
23.Munz, D. and Fett, T., Mechanisches Verhalten keramischer Werkstoffe (Springer-Verlag, Berlin, 1989).CrossRefGoogle Scholar
24.Carter, W.C., Langer, S.A., and Fuller, E.R. Jr., The OOF Manual: Version 1.0, NISTIR 6256 (National Institute of Standards and Technology, Gaithersburg, MD, 1998).CrossRefGoogle Scholar
25.Jagota, A. and Bennison, S.J., Modelling Simul. Mater. Sci. Eng. 3, 485 (1995).CrossRefGoogle Scholar
26.Ohji, T., Jeong, Y-K., Choa, Y-H., and Niihara, K., J. Am. Ceram. Soc. 81, 1453 (1998).CrossRefGoogle Scholar
27.Merkert, P., Hoffman, M., and Rödel, J., J. Eur. Ceram. Soc. 18, 1645 (1998).CrossRefGoogle Scholar