Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-30T23:34:37.428Z Has data issue: false hasContentIssue false

The fracture toughness for first matrix cracking of a unidirectionally reinforced carbon/carbon composite material

Published online by Cambridge University Press:  31 January 2011

Tatsuya Miyajima
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441, Japan
Mototsugu Sakai
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441, Japan
Get access

Abstract

The fracture toughness for first matrix cracking of a uniaxially reinforced C-fiber/C-matrix composite is investigated using a modified controlled surface flaw method. The theoretical models for first matrix cracking of brittle matrix composites including the stress intensity and the potential energy approaches are reviewed in the light of the experimental results. The sharing of the applied load between the reinforcing fibers and the brittle matrix along with extensive crack front debonding enhance the fracture toughness for first matrix cracking.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Evans, A. G., Fracture Mechanics of Ceramics, edited by Biadt, R. C., Hasselman, D. P. H., and Lange, F. F. (Plenum Press, New York, 1974), Vol. 1, p. 17.Google Scholar
2.Munz, D., ibid. (1983), Vol. 6, p. 1.CrossRefGoogle Scholar
3.Freiman, S. W., Am. Ceram. Soc. Bull. 67 (2), 392 (1988).Google Scholar
4.Sakai, M. and Bradt, R. C., Int. Mater. Rev., in press.Google Scholar
5.Marshall, D. B. and Evans, A. G., J. Am. Ceram. Soc. 68 (5), 225 (1985).CrossRefGoogle Scholar
6.Aveston, J., Cooper, G. A., and Kelly, A., The Properties of Fiber Composites, NPL-Conference Proceedings (ICP Science and Technology Press, Guildford, U. K., 1971), p. 15.Google Scholar
7.Kelly, A., Proc. R. Soc. London A-319, 95 (1970).Google Scholar
8.Harris, B., Metal Science, August-September, 351 (1980).CrossRefGoogle Scholar
9.Sakai, M., Miyajima, T., and Inagaki, M., Compo. Sci. and Tech. 40 (3), 231 (1991).CrossRefGoogle Scholar
10.Miyajima, T. and Sakai, M., J. Mater. Res. 6, 539 (1991).CrossRefGoogle Scholar
11.Miyajima, T. and Sakai, M., The 5th Int. Conf. Fracture Mechanics of Ceramics, Nagoya, Japan, July 1991.Google Scholar
12.Marshall, D. B., Cox, B. N., and Evans, A. G., Acta Metall. 33 (11), 2031 (1985).CrossRefGoogle Scholar
13.McCartney, L. N., Proc. R. Soc. London A-409, 329 (1978).Google Scholar
14.Newman, J. C. Jr and Raju, I. S., NASA Technical Note, TP-1578 (1981).Google Scholar
15.Stress Intensity Factors Handbook, edited by Murakami, Y. (Pergamon Press, Oxford, 1987), Vols. 1 and 2.Google Scholar
16.Sih, G. C., Paris, P. C., and Irwin, G. R., Int. J. Fract. Mech. 1, 189 (1965).CrossRefGoogle Scholar
17.Kageyama, K., Nonaka, K., Shimura, S., and Fukuda, S., Trans. Jpn. Soc. Mech. Eng. A-50, 1260 (1984).CrossRefGoogle Scholar
18.Awaji, H. and Sato, S., Tanso (96), 2 (1979).CrossRefGoogle Scholar
19.Sakai, M., Yoshimura, J., Goto, Y., and Inagaki, M., J. Am. Ceram. Soc. 71 (8), 609 (1988).CrossRefGoogle Scholar
20.Sakai, M., Tanso (134), 211 (1988).CrossRefGoogle Scholar
21.Sato, S., Kurumada, A., Iwaki, H., and Komatsu, Y., Carbon 27 (6), 791 (1989).CrossRefGoogle Scholar
22.Cook, J. and Gordon, J. E., Proc. R. Soc. London A-282, 508 (1964).Google Scholar
23.Sakai, M., Takeuchi, S., Fischbach, D. B., and Bradt, R. C., Ceramic Microstructures '86; Role of Interface, edited by Pask, J. A. and Evans, A. G. (Plenum Press, New York, 1987), p. 869.CrossRefGoogle Scholar
24.Marshall, D. B. and Cox, B. N., Acta Metall. 35 (11), 2607 (1987).CrossRefGoogle Scholar