Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T20:07:20.219Z Has data issue: false hasContentIssue false

Fracture toughness of macro-defect-free cement using small crack techniques

Published online by Cambridge University Press:  31 January 2011

Y-S. Chou
Affiliation:
The Pennsylvania State University, University Park, Pennsylvania 16802
J. J. Mecholsky Jr.
Affiliation:
The Pennsylvania State University, University Park, Pennsylvania 16802
M. Silsbee
Affiliation:
The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

The fracture toughness of a macro-defect-free (MDF) cement was calculated from two measurement techniques: (1) indentation-strength method and (2) fracture surface analysis (FSA). It was found that the indentation-strength method, which showed good agreement with FSA, was applicable for estimating the fracture toughness of MDF cement. The ultimate toughness was found to be 1.25 MPa m1/2 for this MDF cement, which contained 3 wt. % polymer. An R-curve (crack-growth-resistance) bchavior was also observed. Scanning electron micrographs showed extensive microcracking on the fracture surface. Microstructural effects are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Diamond, S., in Very High Strength Cement-Based Materials (Proc. Mater. Res. Soc. Symp.), edited by Young, J. F. (Materials Research Society, Pittsburgh, PA), Vol. 42, pp. 233243.Google Scholar
2Alford, N. Mc N., Groves, G. W., and Double, D. D., Cement and Concrete Research 12, 349 (1982).CrossRefGoogle Scholar
3Higgins, D. D. and Bailey, J. E., J. Mater. Sci. 11, 1995 (1976).CrossRefGoogle Scholar
4Birchall, J. D., Howard, A. J., and Kendall, K., Nature 289, 388 (1981).CrossRefGoogle Scholar
5Roy, D. M. and Gouda, G. R., Cement and Concrete Research 5, 153 (1975).Google Scholar
6Kendall, K., Howard, A. J., and Birchall, J. D., Philos. Trans. R. Soc. London A310, 139 (1983).Google Scholar
7Eden, N. B. and Bailey, J. E., J. Mater. Sci. 10, 150 (1984).Google Scholar
8Alford, N. Mc N. and Birchall, J. D., in Very High Strength Cement-Based Materials (Proc. Mater. Res. Soc. Symp.), edited by Young, J. F. (Materials Research Society, Pittsburgh, PA), Vol. 42, pp. 265276.Google Scholar
9Beaudoin, J. J., Cement and Concrete Research 13, 81 (1983).CrossRefGoogle Scholar
10Beaudoin, J. J., Cement and Concrete Research 12, 289 (1982).CrossRefGoogle Scholar
11Brown, J. H. and Pomeroy, C. D., Cement and Concrete Research 3, 475 (1973).CrossRefGoogle Scholar
12Rossi, P., Boulay, C., Acker, P., and Malier, Y., in Cement-Based Composites: Strain-Rate Effects on Fracture (Proc. Mater. Res. Soc. Symp.), edited by Mindess, S. and Shah, S. P. (Materials Research Society, Pittsburgh, PA, 1986), Vol. 64, pp. 3946.Google Scholar
13Bladie, K. D. and Pratt, P. L., ibid., pp. 4761.Google Scholar
14Eden, N. B. and Bailey, J. E., J. Mater. Sci. 19, 2677 (1984).CrossRefGoogle Scholar
15Mai, Y., Barakat, B., Cotterell, B., and Swain, M., Proc. Advanced Materials, Materials Research Society, Tokyo, Japan, 13 (1988).Google Scholar
16Chantikul, P., Anstis, G. R., Lawn, B. R., and Marshall, D. B., ibid., 64, 539 (1981).Google Scholar
17Rice, R. W., in Fractography of Glasses and Ceramics, Adv. Ceram., edited by Varver, J. R. and Frechette, V. D., 22, 356 (1986).Google Scholar
18Li, Z., Ghosh, A., Kobayashi, S., and Bradt, R. C., J. Am. Ceram. Soc. 72, 904 (1989).Google Scholar
19Randall, P. N., in Plane Strain Toughness Testing of High Strength Metallic Materials, edited by Brown, W. F., Jr. and Srawley, J. E., ASTM STP 410, 88126 (1966).Google Scholar
20Marshall, D. B., Noma, T., and Evans, A. G., J. Am. Ceram. Soc. 65, c175c176 (1982).Google Scholar
21Cook, R. F. and Lawn, B. R., J. Am. Ceram. Soc. 66, c200 (1983).Google Scholar
22Healey, J. T. and Mecholsky, J. J., Scanning 4, 62 (1981).CrossRefGoogle Scholar
23Healey, J. T. and Mecholsky, J. J., in Fractography of Ceramics and Metals Failures, edited by Mecholsky, J. J., Jr. and Powell, S. R., Jr., ASTM STP 827, 157181 (1984).Google Scholar
24Cook, R. F., J. Mater. Res. 2, 345 (1987).Google Scholar
25Rice, R. W., Freiman, S. W., and Mecholsky, J. J., Jr., J. Am. Ceram. Soc. 63, 129 (1980).Google Scholar
26Shah, S. P. and McGarry, F. J., J. of the Engineering Mechanics Division, Proc. of the American Society of Civil Engineers (Dec. 1971), pp. 16631676.Google Scholar
27Cook, R. F. and Clarke, D. R., Acta Metall. 36, 555 (1988).CrossRefGoogle Scholar
28Struble, L, Stutzman, P, and Fuller, E. R, Jr., J. Am. Ceram. Soc. 72, 2295 (1989)CrossRefGoogle Scholar