Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T19:33:54.388Z Has data issue: false hasContentIssue false

From polymer transistors toward printed electronics

Published online by Cambridge University Press:  03 March 2011

W. Clemens*
Affiliation:
PolyIC GmbH & Co. KG, Paul-Gossen-Str. 100, 91052 Erlangen, Germany
W. Fix
Affiliation:
PolyIC GmbH & Co. KG, Paul-Gossen-Str. 100, 91052 Erlangen, Germany
J. Ficker
Affiliation:
PolyIC GmbH & Co. KG, Paul-Gossen-Str. 100, 91052 Erlangen, Germany
A. Knobloch
Affiliation:
PolyIC GmbH & Co. KG, Paul-Gossen-Str. 100, 91052 Erlangen, Germany
A. Ullmann
Affiliation:
PolyIC GmbH & Co. KG, Paul-Gossen-Str. 100, 91052 Erlangen, Germany
*
a) Address all correspondence to this author. e-mail: wolfgang.clemens@polyic.com
Get access

Abstract

Printed organic circuits have the potential to revolutionize the spread of electronic applications. This will be enabled by inexpensive and fast fabrication with printing techniques using soluble organic materials. Two main challenges have to be mastered on the way towards printed electronics. First, the development of stable transistors and an adapted chip design for organic materials, and second, the development of a reliable fabrication process. We present our results on high performance polymer transistors, mainly based on poly-3alkylthiophene (P3AT) as semiconducting material. Fast circuits up to 200 kHz and stable circuits with operation lifetimes of more than 1000 h under ambient conditions without any encapsulation are shown. We also report on a fully printed, all organic ring oscillator.

Type
Reviews—Organic Electronics Special Section
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shirakawa, H.: The discovery of polyacetylene film: The dawning of an era of conducting polymers, in Nobel Lectures, Chemistry 1996–2000, edited by Grenthe, Ingmar (World Scientific Publishing Co., Singapore, 2003), p. 453Google Scholar
2.Heeger, A.J.: Semiconducting and metallic polymers: The fourth gerneration of polymeric materials, in Nobel Lectures, Chemistry 1996–2000, edited by Grenthe, Ingmar (World Scientific Publishing Co., Singapore, 2003), p. 380Google Scholar
3.MacDiarmid, A.G.: Synthetic metals: A novel role for organic polymers, in Nobel Lectures, Chemistry 1996–2000, edited by Grenthe, Ingmar (World Scientific Publishing Co., Singapore, 2003), p. 427Google Scholar
4.Ullmann, A., Ficker, J., Fix, W., Rost, H., Clemens, W., McCulloch, I. and Giles, M.: High Performance Organic Field-Effect Transistors and Integrated Inverters, in Electronic, Optical and Optoelectric Polymers and Oligomers, edited by Jabbour, G.E. and Sariciftci, N.S. (Mater. Res. Soc. Symp. Proc. 665, Warrendale PA, 2002), p. 265, C7.5Google Scholar
5.Dimitrakopoulos, C.D. and Mascaro, D.J.: Organic thin-film transistors: A review of recent advances. BM J.RES. DEV. 45, 11 (2001).Google Scholar
6.Kelley, T.W., Muyres, D.V., Baude, P.F., Smith, T.P., and Jones, T.D., in Organic and Polymeric Materials and Devices, edited by Blom, P.W.M., Greenham, N.C., Dimitrakopoulos, C.D., and Frisbie, C.D. (Mat. Res. Soc. Symp. Proc. 771, Warrendale, PA, 2003), p. 169, L6.5.Google Scholar
7.Clemens, W. and Fix, W.: From Organic Transistors to Plastic Chips. Phys. J. 2, 31 (2003).Google Scholar
8.Sirringhaus, H., Brown, A.R., Friend, R.H., Nielsen, M.M., Beechgard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P. and de Leeuw, D.M.: Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401 685–688 (1999).CrossRefGoogle Scholar
9.Sze, S.M., Physics of Semiconductor Devices (J.Wiley & Sons, NewYork, 1981)Google Scholar
10.Rost, H., Bernds, A., Clemens, W., Fix, W., Ficker, J., Ullmann, A., Moreno, S.R., and McCulloch, I.: All-Polymer Organic Field Effect Transistors, in Proc. Mat. Week, edited by WerkstoffwochePartnerschaft GbR (CD published by Werkstoff-Informationsgesellschaft, Frankfurt, Germany, 2002).Google Scholar
11.Fix, W., Ullmann, A., Ficker, J. and Clemens, W. Fast and stable polymer electronic circuits, edited by DeMaria, J.. Symposium on Optical Science and Technology, No. 5217-01 (SPIE, San Diego, CA, 2003)Google Scholar
12.Fix, W., Ullmann, A., Zipperer, D., and Clemens, W.: Fast and stable polymer electronic circuits, presented at SPIE’s 48th Annual Meeting 5217-01 (2003)Google Scholar
13.Gelinck, G.H., Geuns, T.C.T. and de Leeuw, D.M.: High-performance all-polymer integrated circuits. Appl. Phys. Lett. 77, 1487 (2000).Google Scholar
14.Crone, B., Dodabalapur, A., Lin, Y.Y., Filas, R.W., Bao, Z., LaDuca, A., Sarpeshkar, R., Katz, H.E. and Li, W.: Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521 (2000).CrossRefGoogle ScholarPubMed
15.Gundlach, D.J., Zhou, L., Nichols, J.A., Huang, J.-R., Sheraw, C.D., and Jackson, T.N., Organic Thin Film Phototransistors and Fast Circuits, International Electron Devices Meeting Technical Digest, 34.1.1 (2001).Google Scholar
16.Fix, W., Ullmann, A., Ficker, J., Rost, H., Clemens, W., Brennan, D., Welsh, D. and O’Brien, J. Fast polymer integrated circuits based on a polyfluorene derivative, in Proc. ESSDERC 2002, edited by Baccarani, G., Gnani, E., and Rudan, M. (University of Bologna, Bologna, Italy, 2002), pp. 527529Google Scholar
17.Abdou, M.S.A., Orfino, F.P., Xie, Z.W., Deen, M.J. and Holdcroft, S.: Reversible charge transfer complexes between molecular oxygen and poly(3-alkylthiophene)s. Adv. Mater. 6, 838 (1994).CrossRefGoogle Scholar
18.Ohmori, Y., Muro, K., Takahashi, H., Uchida, M., Kawai, T. and Yoshino, K.: Gas-sensitive Schottky gated field effect transistors utilizing poly(3-alkylthiophene) films. Jpn. J. Appl. Phys. 30 L1247 (1991).CrossRefGoogle Scholar
19.Sirringhaus, H., Tessler, N. and Friend, R.H.: Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741 (1998).CrossRefGoogle ScholarPubMed
20.Horowitz, G., Deloffre, F., Garnier, F., Hajlaoui, R., Hmyene, M. and Yassar, A.: All-organic field-effect transistors made of p-conjugated oligomers and polymeric insulators. Synth. Met. 54, 435 (1993).CrossRefGoogle Scholar
21.Horowitz, G.: Origin of the ohmic current in organic field-effect transistors. Adv. Mater. 8, 177 (1996).CrossRefGoogle Scholar
22.Xie, Z., Abdou, M.S.A., Lu, X., Deen, M.J. and Holdcroft, S.: Electrical characteristics and photolytic tuning of poly(3-hexylthiophene) thin film metal-insulator-semiconductor field-effect transistors (MISFETs). Can. J. Phys. 70, 1171 (1992).CrossRefGoogle Scholar
23.Taylor, D.M., Gomes, H.L., Underhill, A.E., Edge, S. and Clemenson, P.I.: Effect of oxygen on the electrical characteristics of field effect transistors formed from electrochemically deposited films of poly(3-methylthiophene). J. Phys. D: Appl. Phys. 24, 2032 (1991).CrossRefGoogle Scholar
24.Ostoja, P., Guerri, S., Impronata, M., Zabberoni, P., Danieli, R., Rossini, S., Taliani, C. and Zamboni, R.: Instability in electrical performance of organic semiconductor devices Adv. Mat. Opt. Elec. 1, 127 (1992).CrossRefGoogle Scholar
25.Horowitz, G., Peng, X., Fichou, D. and Garnier, F.: The oligothiophene-based field-effect transistor: How it works and how to improve it. J. Appl. Phys. 67, 528 (1990).CrossRefGoogle Scholar
26.Mohammad, F., Calvert, P.D. and Billingham, N.C.: FT-IR studies on thermal degradation of electrically conducting polymers. Synth. Met. 66, 33 (1994).CrossRefGoogle Scholar
27.Abdou, M.S.A. and Holdcroft, S.: Solid-state photochemistry of p-conjugated poly(3-alkylthiophenes). Can. J. Chem. 73, 1893 (1995).CrossRefGoogle Scholar
28.Schoonveld, W.A., Oostinga, J.B., Vrijmoeth, J. and Klapwijk, T.M.: Charge trapping instabilities of sexithiophene thin film transistors. Synth. Met. 101, 608 (1999).CrossRefGoogle Scholar
29.Ficker, J., Ullmann, A., Fix, W., Rost, H. and Clemens, W.: Stability of polythiophene-based transistors and circuits. J. Appl. Phys. 94, 2638 (2003).CrossRefGoogle Scholar
30.Garnier, F., Hajlaoui, R., Yassar, A. and Srivastava, P.: All-polymer field-effect transistor realized by printing techniques. Science 265, 1684 (1994).CrossRefGoogle ScholarPubMed
31.Beh, W.S., Kim, I.T., Qin, D., Xia, Y. and Whitesides, G.M.: Formation of patterned microstructures of conducting polymers by soft lithography, and applications in microelectronic device fabrication Adv. Mat. 11(12), 1038 (1999).3.0.CO;2-L>CrossRefGoogle Scholar
32.Rogers, J.A., Bao, Z. and Raju, V.R.: Nonphotolithographic fabrication of organic transistors with micron feature sizes. Appl. Phys. Lett. 72(21), 2716 (1998).CrossRefGoogle Scholar
33.Garnier, F., Hajlaoui, R., Yassar, A. and Srivastava, P.: All-polymer field-effect transistor realized by printing techniques. Science 265, 1684 (1994).CrossRefGoogle ScholarPubMed
34.Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E.P.: High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123 (2000).CrossRefGoogle ScholarPubMed
35.Blanchet, G.B., Loo, Y-L., Rogers, J.A., Gao, F. and Fincher, C.R.: Large area, high resolution, dry printing of conducting polymers for organic electronics. Appl. Phys. Lett. 82(3), 463 (2003).CrossRefGoogle Scholar
36.Rogers, J.A., Bao, Z., Makhija, A. and Braun, P.: Process suitable for reel-to-reel production of high-performance organic transistors and circuits. Adv. Mat. 11(9), 741 (1999).3.0.CO;2-L>CrossRefGoogle Scholar
37.Rogers, J.A., Bao, Z., Meier, M., Dodabalapur, A., Schueller, O.J.A. and Whitesides, G.M.: Printing, molding, and near-field photolithographic methods for patterning organic lasers, smart pixels and simple circuits. Synth. Met. 115, 5 (2000).CrossRefGoogle Scholar
38.Bao, Z., Feng, Y., Dodabalapur, A., Raju, V.R. and Lovinger, A.J.: High-performance plastic transistors fabricated by printing techniques. Chem. Mater. 9(6), 1299 (1997).CrossRefGoogle Scholar
39.Kawase, T., Sirringhaus, H., Friend, R.H. and Shimoda, T.: Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits. Adv. Mater. 13(21), 1601 (2001).3.0.CO;2-X>CrossRefGoogle Scholar
40.Berggren, M., Kugler, T., Remonen, T., Nilsson, D., Miaoxiang, C. and Norberg, P. Paper electronics and electronic paper. Proc. Polytronic, edited by Aschenbremer, R., IEEE (Potsdam, Germany, 2001), p. 300Google Scholar
41.Chen, M., Nilsson, D., Kugler, T., Berggren, M. and Remonen, T.: Bi-stable and dynamic current modulation in electrchemical organic transistors. Appl. Phys. Lett. 81(11), 2011 (2002).Google Scholar
42.Nilsson, D., Chen, M., Kugler, T., Remonen, T., Armgarth, M. and Berggren, M.: Bi-stable and dynamic current modulation in electrchemical organic transistors. Adv. Mater. 14(1), 51 (2002).3.0.CO;2-#>CrossRefGoogle Scholar
43.Knobloch, A., Bernds, A. and Clemens, W. Printed polymer transistors. Proc. Polytronic, edited by Aschenbremer, R., IEEE (Potsdam, Germany, 2001), p. 84Google Scholar
44.Knobloch, A., Bernds, A., and Clemens, W.: An approach towards the printing of polymer circuits, in Electronics on Unconventional Substrates — Electrotextiles and Giant-Area Flexible Circuits, edited by Shur, M.S., Wilson, P.M., and Urban, D. (Mater. Res. Soc. Symp. Proc. 736, Warrendale, PA, 2003), p. 277, D6.3.1.Google Scholar
45.Manuelli, A., Knobloch, A., Bernds, A. and Clemens, W. Applicability of coating techniques for the production of organic field effect transistors. Proc. Polytronic, edited by Illyefalvi-Vitez, Z., IEEE (Zalaegerszeg, Hungary, 2002), p. 201Google Scholar
46.Knobloch, A., Manuelli, A., Bernds, A. and Clemens, W.: Fully printed integrated circuits from solution processable polymers. (Accepted for publication in J. Appl. Phys.).Google Scholar