Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T17:18:55.923Z Has data issue: false hasContentIssue false

Gas-phase diffusion and surface reaction as limiting mechanisms in the aerosol-assisted chemical vapor deposition of TiO2 films from titanium diisopropoxide

Published online by Cambridge University Press:  03 March 2011

A. Conde-Gallardo*
Affiliation:
Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, México Distrito Federal 07360, México
M. Guerrero
Affiliation:
Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, México Distrito Federal 07360, México
R. Fragoso
Affiliation:
Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, México Distrito Federal 07360, México
N. Castillo
Affiliation:
Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, México Distrito Federal 07360, México
*
a) Address all correspondence to this author. e-mail: aconde@fis.cinvestav.mx
Get access

Abstract

Titanium dioxide thin films were deposited on crystalline silicon (100) substrates by delivering a liquid aerosol of titanium-diisopropoxide. The evidence of a metalorganic chemical vapor deposition process observed in the crystalline and morphological features of the films is strongly supported by the behavior of the growth rate rg as a function of the deposition temperature. The rg line shape indicates that in a wide range of temperatures (∼180–400 °C), the film formation is limited by both gas-phase diffusion of some molecular species toward the substrate surface and the thermal reaction of those species on that surface. The activation energy EA that characterizes the surface reaction depends somewhat on the precursor concentration; a fitting procedure to an equation that takes into account both limiting mechanisms (gas-phase diffusion + surface reaction) yields EA ≃ 27.6 kJ/mol.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Conde-Gallardo, A., Guerrero, M., Castillo, N., Soto, A.B., Fragoso, R., Cabañas-Moreno, J.G.: TiO2 anatase thin films deposited by spray pyrolysis of an aerosol of titanium disopropoxide. Thin Solid Films 473, 68 (2005).CrossRefGoogle Scholar
2.Castañeda, L., Alonso, J.C., Ortiz, A., Andrade, E., Saniger, J.M., Bañuelos, J.G.: Spray pyrolysis deposition and characterization of titanium oxide thin films. Mater. Chem. Phys. 77, 938 (2002).CrossRefGoogle Scholar
3.Kodas, T.T., Hampden-Smith, M.J. Film formation, in Aerosol Processing of Materials (Wiley-VCH, New York, 1999), p. 492.Google Scholar
4.Viguié, J.C., Spitz, J.: Chemical vapor deposition at low temperatures. J. Electrochem. Soc. 122, 585 (1975).CrossRefGoogle Scholar
5.Langlet, M., Joubert, J.C. The pyrosol process or the pyrolysis of an ultrasonically generated aerosol, in Chemistry of Advanced Materials, edited by Raim, C.N.R. (Blackwell, Oxford, UK, 1993), p. 55.Google Scholar
6.Langlet, M., Labeu, M., Bochu, B., Joubert, J.C.: Preparation of thin films in the system γFe2O3–Fe3O4 for recording media by spray pyrolysis of organometallic solution using an ultrasonic pump. IEEE Trans. Magn. 22, 151 (1986).CrossRefGoogle Scholar
7.Kodas, T.T., Hampden-Smith, M.J. Overview of metal CVD, in The Chemistry of Metal CVD (VCH, Weinheim, Germany, 1994), p. 460.CrossRefGoogle Scholar
8.Stringfellow, G.B.: A critical appraisal of growth mechanisms in MOPVE. J. Cryst. Growth 68, 111 (1984).CrossRefGoogle Scholar
9.Sherman, A. Fundamentals of thermal CVD, in Chemical Vapor Deposition for Microelectronics (Noyes Publications, Park Ridge, NJ, 1987), pp. 138.Google Scholar
10.Tang, H., Prasad, K., Samjinés, R., Schmid, P.E., Lévy, F.: Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 75, 2042 (1994).CrossRefGoogle Scholar
11.Aarik, J., Aidla, A., Mändar, H., Sammelselg, V.: Anomalous effect of temperature on atomic layer deposition of titanium dioxide. J. Cryst. Growth 220, 531 (2000).CrossRefGoogle Scholar
12.Sandell, A., Anderson, M.P., Alfredsson, Y., Johansson, M.K-J., Schnadt, J., Rensmo, H., Siegbahn, H., Urdal, P.: Titanium dioxide thin-films growth on silicon (111) by chemical vapor deposition of titanium (IV) isopropoxide. J. Appl. Phys. 92, 3381 (2002).CrossRefGoogle Scholar
13.Battiston, G.A., Gerbasi, R., Gregori, A., Porchia, M., Cattarin, S., Rizzi, G.A.: PECVD of amorphous TiO2 thin films, effect of growth temperature and plasma gas composition. Thin Solid Films 371, 126 (2000).CrossRefGoogle Scholar
14.LaPrince-Wang, Y., Yu-Zhang, K.: Study of the growth and morphology of TiO2 thin films by AFM and TEM. Surf. Coat. Technol. 140, 155 (2001).CrossRefGoogle Scholar
15.Kondepudi, D., Prigogine, I. Solutions, in Modern Thermodynamics (John Wiley & Sons, New York, Weinheim, Toronto, Singapore, 1998), p. 184.Google Scholar
16.Bradley, D.C., Mehrotra, R.C., Gaur, D.P. Physical properties of metal alkoxides, in Metal Alkoxides (Academic Press, London, New York 1978), pp. 6266.Google Scholar
17.Tucic, A., Marinkovic, Z.V., Mancic, L., Cilenso, M., Milosevic, O.: Pyrosol preparation and structural characterization of SnO2 thin films. J. Mater. Process. Technol. 143–144, 41 (2003).CrossRefGoogle Scholar
18.Conde-Gallardo, A., Castillo, N., Guerrero, M.: Growth kinetics of TiO2 films deposited by aerosol-assisted chemical-vapor deposition from two different precursors (Ti-n butoxide and Ti-diisopropoxide). J. Appl. Phys. 98, 054908 (2005).CrossRefGoogle Scholar
19.Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).CrossRefGoogle Scholar
20.Heiland, G., Lüth, H. Adsorption on oxides, in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol. 3, edited by King, D.A. and Woodruff, P.D. (Elsevier, Amsterdam, Oxford, New York, 1984), pp. 190204.Google Scholar
21.Somorjai, G.A. Catalyzed surface reactions: Principals, in Chemistry in Two Dimensions Surface (Cornell University Press, Ithaca, London, 1981), pp. 345, 381–413.Google Scholar