Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T01:15:01.604Z Has data issue: false hasContentIssue false

Gel-melting method for preparation of organically modified siloxane low-melting glasses

Published online by Cambridge University Press:  03 March 2011

Hirokazu Masai
Affiliation:
Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
Masahide Takahashi*
Affiliation:
Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan; and PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
Yomei Tokuda
Affiliation:
Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
Toshinobu Yoko
Affiliation:
Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
*
a)Address all correspondence to this author. e-mail: masahide@noncry.kuicr.kyoto-u.ac.jp
Get access

Abstract

Softening or melting behavior of the organically-modified siloxane hybrid gels and glasses in the system of RSiO3/2 and R2SiO2/2 (R: methyl and phenyl) has been investigated to obtain a new family of low-melting glasses. The RSiO3/2 and RSiO3/2–R2SiO2/2 gels showed softening temperatures around 50–100 °C. The softening temperature of RSiO3/2 single-component glasses, which were obtained by melting the corresponding gels at a temperature above the softening temperature, increased by heat-treatment at 200 °C, and finally showed no softening behavior. On the other hand, in the PhSiO3/2–Ph2SiO2/2 binary glasses, the softening temperatures showed a tendency to saturate after longer heat treatment over 200 h. These facts indicate that the present organically modified siloxane system will be a potential candidate for the low-melting glass.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tick, P.A.: Water durable glasses with ultra low melting temperatures. Phys. Chem. Glasses 25, 149 (1984).Google Scholar
2.Cheng, J. and Jin, Z.: New lead-halide-based glass-forming systems. J. Non-Cryst. Solids 184, 213 (1995).CrossRefGoogle Scholar
3.Liu, H.S., Shih, P.Y. and Chin, T.S.: Low melting PbO–ZnO–P2O5 glasses. Phys. Chem. Glasses 37, 227 (1996).Google Scholar
4.Sato, Y., Tatsumisago, M. and Minami, T.: Fragility and local structure of low melting SnCl2–P2O5 glasses. Phys. Chem. Glasses 38, 285 (1997).Google Scholar
5.Seddon, A.B.: Chalcohalides: Glass-forming systems and progress in application of percolation theory. J. Non-Cryst. Solids 213–214, 22 (1997).CrossRefGoogle Scholar
6.Takaishi, T., Takahashi, M., Jin, J., Uchino, T. and Yoko, T.: Structural study on PhO–SiO2 glasses by x-ray and neutron diffraction and 29Si MAS NMR measurements. J. Am. Ceram. Soc. (accepted for publication).Google Scholar
7.Mizuno, M., Takahashi, M., Takaishi, T. and Yoko, T.: Leaching of lead and connectivity of plumbate networks in lead silicate glasses. J. Am. Ceram. Soc. (submitted).Google Scholar
8.Kurtz, S.K. and Perry, T.T.: A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798 (1968).CrossRefGoogle Scholar
9.Sanchez, C., Lebeau, B., Chaput, F. and Boilot, J-P.: Optical properties of functional hybrid organic-inorganic nanocomposites. Adv. Mater. 15, 1969 (2003).CrossRefGoogle Scholar
10.Kamioka, H., Hiramatsu, H., Ohta, H., Hirano, M., Ueda, K., Kamiya, T. and Hosono, H.: Third-order optical nonlinearity originating from room-temperature exciton in layered compounds LaCuOS and LaCuOSe. Appl. Phys. Lett. 84, 879 (2004).CrossRefGoogle Scholar
11.Tompkin, W.R., Boyd, R.W., Hall, D.W. and Tick, P.A.: Nonlinear-optical properties of lead-tin fluorophosphates glass containing acridine dyes. J. Opt. Soc. Am. B 4, 1030 (1987).CrossRefGoogle Scholar
12.Orihara, Y., Uo, M., Inoue, H., Makishima, A. and Tani, T.: Preparation and spectroscopy of lead-tin fluorophosphates glass doped with TPPS and TPPS-Sn. Ber. Bunsenges. Phys. Chem. 100, 1582 (1996).CrossRefGoogle Scholar
13.Hurwitz, F.I., Hyatt, L., Gorecki, J. and D’Amore, L.: Silsesquioxane as precursors to ceramic composites. Ceram. Eng. Sci. Proc. 8, 732 (1987).CrossRefGoogle Scholar
14.Ishida, H., Shick, R. and Hurwitz, F.: The rheology of phenyl-propyl silsesquioxane in the fiber spinning regime. Polym. Mater. Sci. Eng. 63, 882 (1990).Google Scholar
15.Matsuda, A., Sasaki, T., Hasegawa, K., Tatsumisago, M. and Minami, T.: Thermal softening behavior of poly(phenylsilsesqioxane) and poly(benzylsilsesquioxane) particles. J. Ceram. Soc. Jpn. 108, 830 (2000).CrossRefGoogle Scholar
16.Matsuda, A., Sasaki, T., Hasegawa, K., Tatsumisago, M. and Minami, T.: Thermal softening behavior and application to transparent thick films of poly(benzylsilsesquioxane) particles prepared by the sol-gel process. J. Am. Ceram. Soc. 84, 775 (2001).CrossRefGoogle Scholar
17.Wang, C.Y., Shen, Z.X. and Zheng, J.Z.: Thermal cure study of a low-k methyl silsesquioxane for intermetal dielectric application by FTIR spectroscopy. Appl. Spectrosc. 54, 209 (2000).CrossRefGoogle Scholar
18.Kobayashi, K.: Low polarization and low temperature reflow of inorganic borophosphosilicate glasses formed from organic sources. Mater. Sci. Eng. B98, 181 (2003).CrossRefGoogle Scholar
19.Haruvy, Y., Gilath, I., Maniewictz, M. and Eisenberg, N.: Sol-gel prepared glass for refractive and diffractive micro-optical elements and arrays. J. Sol-Gel Sci. Technol. 13, 547 (1998).CrossRefGoogle Scholar
20.Karkkainen, A.H.O., Tamkin, J.M., Rogers, J.D., Neal, D.R., Hormi, O.E., Jabbour, G.E., Rantala, J.T. and Descour, M.R.: Direct photolithographic deforming of organomodified siloxane films for micro-opticics fabrication. Appl. Opt. 41, 3988 (2002).CrossRefGoogle ScholarPubMed
21.Houbertz, R., Domann, G., Cronauer, C., Schmitt, A., Martin, H., Park, J-U., Frohlich, L., Buestrich, R., Popall, M., Steppel, U., Dannberg, P., Wachter, C. and Brauer, A.: Inorganic-organic hybrid materials for application in optical devices. Thin Solid Films 442, 194 (2003).CrossRefGoogle Scholar
22.Tadanaga, K., Ueyama, K., Sueki, T., Matsuda, A. and Minami, T.: Micropatterning of inorganic-organic hybrid coating films from various tri-functional silicon alkoxides with a double bond in their organic components. J. Sol-Gel Sci. Technol. 26, 431 (2003).CrossRefGoogle Scholar
23.Kitaoka, K., Matsuoka, N., Si, J., Mitsuyu, T. and Hirao, K.: Optical poling of phenyl-silica hybrid thin films doped with azo-dye chromophore. Jpn. J. Appl. Phys. 38 L1029 (1999).CrossRefGoogle Scholar
24.Sanchez, C., Lebeau, B., Ribot, F. and In, M.: Molecular design of sol-gel derived hybrid organic-inorganic nanocomposites. J. Sol-Gel Sci. Technol. 19, 31 (2000).CrossRefGoogle Scholar
25.Han, S., Li, Z., Ji, S., Dai, D., Zhang, R., Zhu, C. and Wang, C.: Nonlinear optical polymer films based on sol-gel derived polysilsesquioxane with pendant chromophoric subunits embedded in size-matched pores. J. Sol-Gel Sci. Technol. 18, 137 (2000).CrossRefGoogle Scholar
26.Niida, H., Takahashi, M., Uchino, T. and Yoko, T.: Preparation and structure of organic-inorganic hybrid precursors for new type low-melting glasses. J. Non-Cryst. Solids 306, 292 (2002).CrossRefGoogle Scholar
27.Niida, H., Takahashi, M., Uchino, T. and Yoko, T.: Spontaneous reduction of europium ions below 250 °C in organic-inorganic hybrid low-melting phosphate glasses. J. Mater. Res. 18, 1 (2003).CrossRefGoogle Scholar
28.Choi, J.Y., Kim, C.H. and Kim, D.K.: Formation and characterization of monodisperse, spherical organo-silica powders from organoalkoxysilane-water system. J. Am. Ceram. Soc. 81, 1184 (1998).CrossRefGoogle Scholar
29.van Bommel, M.J., Bernards, T.N.M. and Boonstra, A.H.: The influence of the addition of alkyl-substituted ethoxysilane on the hydrolysis-condensation process of TEOS. J. Non-Cryst. Solids 128, 231 (1991).CrossRefGoogle Scholar
30.Kim, S.Y., Choi, D.G. and Yang, S.M.: Rheological analysis of the gelation behavior of tetraethylorthosilane/vinyltriethoxysilane hybrid solutions. Kor. J. Chem. Eng. 19, 190 (2002).CrossRefGoogle Scholar
31.Barnes, H.A., Hutton, J.F. and Walters, K.: An Introduction to Rheology (Elsevier, Amsterdam, Holland, 1989), p. 37 .Google Scholar
32.Koza-Rheology, edited by Osaki, K. and Masuda, T. (Society of Rheology Nihon Reorojil, Kyoto, Japan, (1992), Chap. 3, (in Japanese).Google Scholar
33.Kakiuchida, H., Takahashi, M., Masai, H., Tokuda, Y., and Yoko, T.: Relationship between viscoelastic properties and structure of organic-inorganic hybrid glass and supercooled liquid consisting of R4-mSiOm/2 units, in Proceedings of XX International Conference on Glasses, edited by Yoko, T. (XXICG Organizing Committee, Kyoto, Japan, 2004).Google Scholar