Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T00:51:57.432Z Has data issue: false hasContentIssue false

GeOx and SiOx nanowires grown via the active oxidation of Ge and Si substrates

Published online by Cambridge University Press:  12 July 2011

Avi Shalav*
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200, Australia
Gabriel H. Collin
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200, Australia
Yi Yang
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200, Australia; and School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Taehyun Kim
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200, Australia
Robert G. Elliman
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200, Australia
*
a)Address all correspondence to this author. e-mail: avi.shalav@anu.edu.au
Get access

Abstract

In this study, we show that the volatile monoxide species generated during the active oxidation of Ge and Si substrates can be utilized in the presence of Au catalytic nanoparticles to nucleate and grow GeOx and SiOx nanowires. A simple thermodynamic model is developed to ascertain the critical O2 partial pressure as a function of temperature required for the active oxidation of Ge and Si substrates and is experimentally verified. The ideal conditions for uniform nanowire growth across the substrate are shown to be primarily dependent on the O2 partial pressure, the annealing temperature and thicknesses of the surface oxide, and deposited Au. The role of a metastable surface oxide separating the active oxidation and NW nucleation processes is also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Barth, S., Hernandez-Ramirez, F., Holmes, J.D., and Romano-Rodriguez, A.: Synthesis and applications of one-dimensional semiconductors. Prog. Mater. Sci. 55(6), 563 (2010).CrossRefGoogle Scholar
2.Wang, Z.L.: Oxide nanobelts and nanowires—Growth, properties and applications. J. Nanosci. Nanotechnol. 8(1), 27 (2008).CrossRefGoogle ScholarPubMed
3.Rao, C.N.R., Deepak, F.L., Gundiah, G., and Govindaraj, A.: Inorganic nanowires. Prog. Solid State Chem. 31(1/2), 5 (2003).CrossRefGoogle Scholar
4.Takagi, R.: Growth of oxide whiskers on metals at high temperature. J. Phys. Soc. Jpn. 12(11), 1212 (1957).CrossRefGoogle Scholar
5.Weiss, A. and Weiss, A.: Über Siliziumchalcogenide VI. Zur Kenntnis der faserigen Siliciumdioxyd-modifikation. Z. Anorg. Allg. Chem. 276(1/2), 95 (1954).CrossRefGoogle Scholar
6.Sosman, R.B.: The Phases of Silica (Rutgers University Press, Piscataway, NJ, 1965).Google Scholar
7.Gulbransen, E.A.: Thermochemistry and oxidation of refractory metals at high temperature. Corrosion 26(1), 19 (1970).CrossRefGoogle Scholar
8.Engel, T.: The interaction of molecular and atomic oxygen with Si(100) and Si(111). Surf. Sci. Rep. 18(4), 91 (1993).CrossRefGoogle Scholar
9.Engstrom, J.R., Bonser, D.J., Nelson, M.M., and Engel, T.: The reaction of atomic oxygen with Si(100) and Si(111). 1. Oxide decomposition, active oxidation and the transition to passive oxidation. Surf. Sci. 256(3), 317 (1991).CrossRefGoogle Scholar
10.Kim, T.H., Shalav, A., and Elliman, R.G.: Active-oxidation of Si as the source of vapor-phase reactants in the growth of SiOx nanowires on Si. J. Appl. Phys. 108(7), 076102 (2010).CrossRefGoogle Scholar
11.Shalav, A., Kim, T., and Elliman, R.G.: SiOx nanowires grown via the active oxidation of silicon. Sel. Top. Quant. Elect. (2010, in press).Google Scholar
12.Vanhellemont, J. and Simoen, E.: Brother silicon, sister germanium. J. Electrochem. Soc. 154(7), H572 (2007).CrossRefGoogle Scholar
13.Micoulaut, M., Cormier, L., and Henderson, G.S.: The structure of amorphous, crystalline and liquid GeO2. J. Phys. Condens. Matter 18(45), R753 (2006).CrossRefGoogle Scholar
14.Prabhakaran, K., Maeda, F., Watanabe, Y., and Ogino, T.: Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces. Appl. Phys. Lett. 76(16), 2244 (2000).CrossRefGoogle Scholar
15.Knacke, O., Kubaschewski, O., and Hesselman, K.: Thermochemical Properties of Inorganic Substances, 2 ed. (Springer-Verlag, Berlin, 1991).Google Scholar
16.Chase, M.: NIST-JANAF Thermochemical Tables—4th ed., J. of Phys. Chem. Ref. Data, Monograph No. 9 (1998).Google Scholar
17.McBride, B.J., Gordon, S., and Reno, M.: Thermodynamic data for fifty reference elements, NASA Technical Memorandum 3287/REV1 (2001).Google Scholar
18.Dinsdale, A.T.: SGTE data for pure elements. CALPHAD 15(4), 317 (1991).CrossRefGoogle Scholar
19.Nagashio, K., Lee, C.H., Nishimura, T., Kita, K., and Toriumi, A.: Thermodynamics and kinetics for suppression of GeO desorption by high pressure oxidation of Ge, in CMOS Gate-Stack Scaling-Materials, Interfaces and Reliability Implications, edited by Demkov, A.D., Taylor, B., Harris, H.R., Butterbaugh, J.W., and Rachmady, W. (Mater. Res. Soc. Symp. Proc. 1155, Warrendale, PA, 2009), 1155-C06-02, p. 157.Google Scholar
20.Lee, C.H., Tabata, T., Nishimura, T., Nagashio, K., Kita, K., and Toriumi, A.: Ge/GeO2 interface control with high-pressure oxidation for improving electrical characteristics. Appl. Phys. Expr. 2(7), 071404 (2009).CrossRefGoogle Scholar
21.Gulbransen, E.A. and Jansson, S.A.: High-temperature oxidation, reduction, and volatilization reactions of silicon and silicon-carbide. Oxid. Met. 4(3), 181 (1972).CrossRefGoogle Scholar
22.Hinze, J.W. and Graham, H.C.: Active oxidation of Si and SiC in viscous gas-flow regime. J. Electrochem. Soc. 123(7), 1066 (1976).CrossRefGoogle Scholar
23.Gelain, C., Cassuto, A., and Legoff, P.: Kinetics and mechanism of low-pressure, high-temperature oxidation of silicon. Oxid. Met. 3(2), 139 (1971).CrossRefGoogle Scholar
24.Smith, F.W. and Ghidini, G.: Reaction of oxygen with Si(111) and (100)—critical conditions for the growth of SiO2. J. Electrochem. Soc. 129(6), 1300 (1982).CrossRefGoogle Scholar
25.Wagner, C.: Passivity during the oxidation of silicon at elevated temperatures. J. Appl. Phys. 29(9), 1295 (1958).CrossRefGoogle Scholar
26.Molle, A., Bhulyan, M.N.K., Tallarida, G., and Fanciulli, M.: Formation and stability of germanium oxide induced by atomic oxygen exposure. Mat. Sci. Semicond. Process. 9(4/5), 673 (2006).CrossRefGoogle Scholar
27.Sekhar, P.K. and Bhansali, S.: Manufacturing aspects of oxide nanowires. Mater. Lett. 64(6), 729 (2010).CrossRefGoogle Scholar
28.Chevalier, P.Y.: A thermodynamic evaluation of the Au-Ge and Au-Si systems. Therm. Acta 141, 217 (1989).CrossRefGoogle Scholar
29.Liehr, M., Dallaporta, H., and Lewis, J.E.: Defect formation in SiO2/Si(100) by metal diffusion and reaction. Appl. Phys. Lett. 53(7), 589 (1988).CrossRefGoogle Scholar