Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T10:24:01.277Z Has data issue: false hasContentIssue false

Germanium nanowire synthesis using a localized heat source and a comparison to synthesis in a uniform temperature environment

Published online by Cambridge University Press:  24 August 2011

Christopher J. Redcay
Affiliation:
Department of Mechanical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310
Ongi Englander*
Affiliation:
Department of Mechanical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310
*
a)Address all correspondence to this author. e-mail: englander@eng.fsu.edu
Get access

Abstract

In this work, we compare the synthesis of germanium nanowires (GeNWs) using a highly localized heat source with GeNWs synthesized in a uniform temperature environment. With the exception of thermal environment, identical synthesis parameters were maintained in all experiments. The localized heat source, a suspended silicon microscale heater, enabled site-specific synthesis and thus the direct integration of GeNWs which is presented for the first time. The effect of heat source implementation and local temperature gradients on the resulting nanowires is assessed in terms of resulting nanowire geometry, growth rate, and quality. Overall, we note a reduction in growth rate and elevated kinking levels in locally synthesized nanowires when compared to nanowires synthesized in uniform temperature processes. The taper which typically characterizes GeNWs, however, is significantly reduced. Finally, we explore branching behavior which hints of instabilities in the synthesis process as nanowires grow away from the heat source.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lieber, C.M. and Wang, Z.L.: Functional nanowires. MRS Bull. 32, 99 (2007).CrossRefGoogle Scholar
2.Englander, O., Christensen, D., and Lin, L.: Local synthesis of silicon nanowires and carbon nanotubes on microbridges. Appl. Phys. Lett. 82, 4797 (2003).CrossRefGoogle Scholar
3.Sosnowchik, B.D., Lin, L., and Englander, O.: Localized heating induced chemical vapor deposition for one-dimensional nanostructure synthesis. J. Appl. Phys. 107, 051101 (2010).CrossRefGoogle Scholar
4.Sunden, E.O., Wright, T.L., Lee, J., King, W.P., and Graham, S.: Room-temperature chemical vapor deposition and mass detection on a heated atomic force microscope cantilever. Appl. Phys. Lett. 88, 033107 (2006).CrossRefGoogle Scholar
5.Kawano, T., Christensen, D., Chen, S.P., Cho, C.Y., and Lin, L.W.: Formation and characterization of silicon/carbon nanotube/silicon heterojunctions by local synthesis and assembly. Appl. Phys. Lett. 89, 163510 (2006).CrossRefGoogle Scholar
6.Lin, W.C., Yang, Y.J., Hsieh, G.W., Tsai, C.H., Chen, C.C., and Liang, C.C.: Selective local synthesis of nanowires on a microreactor chip. Sens. Actuators, A 130, 625 (2006).CrossRefGoogle Scholar
7.Dittmer, S., Nerushev, O.A., and Campbell, E.E.B.: Low ambient temperature CVD growth of carbon nanotubes. Appl. Phys. A 84, 243 (2006).CrossRefGoogle Scholar
8.Kawano, T., Chiamori, H.C., Suter, M., Zhou, Q., Sosnowchik, B.D., and Lin, L.W.: An electrothermal carbon nanotube gas sensor. Nano Lett. 7, 3686 (2007).CrossRefGoogle ScholarPubMed
9.Dittmer, S., Mudgal, S., Nerushev, O.A., and Campbell, E.E.B.: Local heating method for growth of aligned carbon nanotubes at low ambient temperature. Low Temp. Phys. 34, 834 (2008).CrossRefGoogle Scholar
10.Haque, M.S., Teo, K.B.K., Rupensinghe, N.L., Ali, S.Z., Haneef, I., Maeng, S., Park, J., Udrea, F., and Milne, W.I.: On-chip deposition of carbon nanotubes using CMOS microhotplates. Nanotechnology 19, 025607 (2008).CrossRefGoogle ScholarPubMed
11.Xu, T., Miao, J., Li, H., and Wang, Z.: Local synthesis of aligned carbon nanotube bundle arrays by using integrated micro-heaters for interconnect applications. Nanotechnology 29, 295303 (2009).CrossRefGoogle Scholar
12.Kim, D.Y., Choi, J.H., Zoulkarneev, A.R., Yang, M.H., Han, I.T., Kim, H.J., Kim, S.I., Baik, C.W., Park, J.H., Yoo, J.B., and Kim, J.M.: Selective formation of carbon nanotubes and its application to field-emitter arrays. IEEE Electron Device Lett. 30, 709 (2009).Google Scholar
13.Englander, O., Christensen, D., and Lin, L.W.: The integration of nanowires and nanotubes with microstructures. Int. J. Mater. Prod. Technol. 34, 77 (2009).CrossRefGoogle Scholar
14.Englander, O., Christensen, D., Kim, J., Lin, L.W., and Morris, S.J.S.: Electric-field assisted growth and self-assembly of intrinsic silicon nanowires. Nano Lett. 5, 705 (2005).CrossRefGoogle ScholarPubMed
15.Englander, O., Christensen, D., Kim, J., and Lin, L.W.: Post-processing techniques for locally self-assembled silicon nanowires. Sens. Actuators, A 135, 10 (2007).CrossRefGoogle Scholar
16.Molhave, K., Wacaser, B.A., Petersen, D.H., Wagner, J.B., Samuelson, L., and Boggild, P.: Epitaxial integration of nanowires in microsystems by local micrometer-scale vapor-phase epitaxy. Small 4, 1741 (2008).CrossRefGoogle ScholarPubMed
17.Kallesøe, C., Wen, C-Y., Mølhave, K., Bøggild, P., and Ross, F.M.: Measurement of local Si-nanowire growth kinetics using in situ transmission electron microscopy of heated cantilevers. Small 6, 2058 (2010).CrossRefGoogle ScholarPubMed
18.Jin, C-B., Yang, J-E., and Jo, M-H.: Shape-controlled growth of single-crystalline Ge nanostructures. Appl. Phys. Lett. 88, 193105 (2006).CrossRefGoogle Scholar
19.Adhikari, H., Marshall, A.F., Chidsey, C.E.D., and McIntyre, P.C.: Germanium nanowire epitaxy: Shape and orientation control. Nano Lett. 6, 318 (2006).CrossRefGoogle ScholarPubMed
20.Jagannathan, H., Deal, M., Nishi, Y., Woodruff, J., Chidsey, C., and McIntyre, P.C.: Nature of germanium nanowire heteroepitaxy on silicon substrates. J. Appl. Phys. 100, 024318 (2006).CrossRefGoogle Scholar
21.Kodambaka, S., Tersoff, J., Reuter, M.C., and Ross, F.M.: Germanium nanowire growth below the eutectic temperature. Science 316, 729 (2007).CrossRefGoogle ScholarPubMed
22.Adhikari, H., Marshall, A.F., Goldthorpe, I.A., Chidsey, C.E.D., and McIntyre, P.C.: Metastability of Au-Ge liquid nanocatalysts: Ge vapor-liquid-solid nanowire growth far below the bulk eutectic temperature. ACS Nano. 1, 415 (2007).CrossRefGoogle ScholarPubMed
23.Chui, B.W., Asheghi, M., Ju, Y.S., Goodson, K.E., Kenny, T.W., and Mamin, H.J.: Intrinsic-carrier thermal runaway in silicon microcantilevers. Microscale Thermophys. Eng. 3, 217 (1999).Google Scholar
24.Cui, Y., Lauhon, L.J., Gudiksen, M.S., Wang, J.F., and Lieber, C.M.: Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214 (2001).CrossRefGoogle Scholar
25.Kamins, T.I., Li, X., Williams, R.S., and Liu, X.: Growth and structure of chemically vapor deposited Ge nanowires on Si substrates. Nano Lett. 4, 503 (2004).CrossRefGoogle Scholar
26.Lu, W. and Lieber, C.M.: Semiconductor nanowires. J. Phys. D: Appl. Phys. 39, R387 (2006).CrossRefGoogle Scholar
27.Madras, P., Dailey, E., and Drucker, J.: Kinetically induced kinking of vapor-liquid-solid grown epitaxial Si nanowires. Nano Lett. 9, 3826 (2009).CrossRefGoogle ScholarPubMed
28.Dayeh, S.A. and Picraux, S.T.: Direct observation of nanoscale size effects in Ge semiconductor nanowire growth. Nano Lett. 10, 4032 (2010).CrossRefGoogle ScholarPubMed
29.Ross, F.M.: Controlling nanowire structures through real time growth studies. Rep. Prog. Phys. 73, 1 (2010).CrossRefGoogle Scholar
30.Cho, H.S. and Kamins, T.I.: In situ control of Au-catalyzed chemical vapor deposited (CVD) Ge nanocone morphology by growth temperature variation. J. Cryst. Growth 312, 2494 (2010).CrossRefGoogle Scholar
31.Tan, T.Y., Li, N., and Gosele, U.: Is there a thermodynamic size limit of nanowires grown by the vapor-liquid-solid process? Appl. Phys. Lett. 83, 1199 (2003).CrossRefGoogle Scholar
32.Chen, Z. and Cao, C.B.: Effect of size in nanowires grown by the vapor-liquid-solid mechanism. Appl. Phys. Lett. 88, 3 (2006).Google Scholar
33.Li, N., Tan, T.Y., and Gosele, U.: Chemical tension and global equilibrium in VLS nanostructure growth process: From nanohillocks to nanowires. Appl. Phys. A 86, 433 (2007).CrossRefGoogle Scholar
34.Schmidt, V., Senz, S., and Gosele, U.: Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism. Phys. Rev. B 75, 045335 (2007).CrossRefGoogle Scholar
35.Wacaser, B.A., Dick, K.A., Johansson, J., Borgstrom, M.T., Deppert, K., and Samuelson, L.: Preferential interface nucleation: An expansion of the VLS growth mechanism for nanowires. Adv. Mater. 21, 153 (2009).CrossRefGoogle Scholar
36.Tamaru, K., Boudart, M., and Taylor, H.: The thermal decomposition of Germane. I. Kinetics. J. Phys. Chem. 59, 801 (1955).CrossRefGoogle Scholar
37.Hall, L.H.: Thermal-decomposition of germane. J. Electrochem. Soc. 119, 1593 (1972).CrossRefGoogle Scholar
38.Xiang, J., Lu, W., Hu, Y.J., Wu, Y., Yan, H., and Lieber, C.M.: Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489 (2006).CrossRefGoogle ScholarPubMed
39.Wagner, R.S. and Doherty, C.J.: Mechanism of branching and kinking during vls crystal growth. J. Electrochem. Soc. Solid State Sci. 115, 93 (1968).Google Scholar
40.Tian, B., Xie, P., Kempa, T.J., Bell, D.C., and Lieber, C.M.: Single-crystalline kinked semiconductor nanowire superstructures. Nat Nano. 4, 824 (2009).CrossRefGoogle ScholarPubMed
41.Lee, G., Woo, S.Y., Yang, J-E., Lee, D., Kim, C-J., and Jo, M-H.: Directionally integrated VLS nanowire growth in a local temperature gradient. Angew. Chem. Int. Ed. 48, 7366 (2009).CrossRefGoogle Scholar
42.Dubrovskii, V.G. and Sibirev, N.V.: General form of the dependences of nanowire growth rate on the nanowire radius. J. Cryst. Growth 304, 504 (2007).CrossRefGoogle Scholar
43.Chen, Z. and Cao, C.B.: Effect of size in nanowires grown by the vapor-liquid-solid mechanism. Appl. Phys. Lett. 88, 143118 (2006).CrossRefGoogle Scholar
44.Reguer, A. and Dallaporta, H.: Growth study of silicon nanowires by electron microscopies. Mater. Sci. Semicond. Process. 12, 44 (2009).CrossRefGoogle Scholar
45.Gamalski, A.D., Tersoff, J., Sharma, R., Ducati, C., and Hofmann, S.: Formation of metastable liquid catalyst during subeutectic growth of germanium nanowires. Nano Lett. 10, 2972 (2010).CrossRefGoogle ScholarPubMed
46.Sutter, E. and Sutter, P.: Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires. Nano Lett. 8, 411 (2008).CrossRefGoogle ScholarPubMed
47.Sutter, E.A. and Sutter, P.W.: Size-dependent phase diagram of nanoscale alloy drops used in vapor-liquid-solid growth of semiconductor nanowires. ACS Nano. 4, 4943 (2010).CrossRefGoogle ScholarPubMed
48.Kawashima, T., Mizutani, T., Nakagawa, T., Torii, H., Saitoh, T., Komori, K., and Fujii, M.: Control of surface migration of gold particles on Si nanowires. Nano Lett. 8, 362 (2007).CrossRefGoogle ScholarPubMed
49.Gentile, P., David, T., Dhalluin, F., Buttard, D., Pauc, N., Hertog, M.D., Ferret, P., and Baron, T.: The growth of small diameter silicon nanowires to nanotrees. Nanotechnology 19, 125608 (2008).CrossRefGoogle ScholarPubMed
50.Dhalluin, F., Desre, P.J., den Hertog, M.I., Rouviere, J-L., Ferret, P., Gentile, P., and Baron, T.: Critical condition for growth of silicon nanowires. J. Appl. Phys. 102, 094906 (2007).CrossRefGoogle Scholar
51.Schwalbach, E.J. and Voorhees, P.W.: Phase equilibrium and nucleation in vls-grown nanowires. Nano Lett. 8, 3739 (2008).CrossRefGoogle ScholarPubMed
52.Redcay, C. J.: The localized synthesis of silicon and germanium nanowires and a comparison to the bulk processes. MS Thesis. Florida State University, Tallahassee (2011).Google Scholar