Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-30T21:04:30.507Z Has data issue: false hasContentIssue false

The Gibbs free energy of formation of a glassy alloy

Published online by Cambridge University Press:  31 January 2011

M. T. Clavaguera-Mora
Affiliation:
Física de Materials, Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain
N. Clavaguera
Affiliation:
Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Diagonal 647, 08028-Barcelona, Spain
Get access

Abstract

A simple expression for the Gibbs free energy of formation of a pure component or a eutectic alloy glass, relative to the stable crystalline phase (or phases) at the same temperature is deduced by use of thermodynamic arguments. The expression obtained is supposed to apply to both monocomponent and multicomponent liquid alloys that might become glasses from the supercooled liquid state, irrespective of the critical cooling rate needed to avoid crystallization.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Predel, B., Physica 103B, 113 (1981).Google Scholar
2Hafner, J., Phys. Rev. B 28, 1734 (1983).CrossRefGoogle Scholar
3Massalski, T. B., Woychik, C. G., and Murray, J. L., Mater. Res. Symp. Proc. 19, 241 (1983).CrossRefGoogle Scholar
4Saunders, N. and Miodownik, A. P., Ber. Bunsenges. Phys. Chem. 87, 830 (1983).CrossRefGoogle Scholar
5Schmidt, I., Z. Metallkd. 74, 561 (1983).Google Scholar
6Murray, J.L., Metall. Trans. A 15A, 261 (1983).Google Scholar
7Sommer, F., Ber. Bunsenges. Phys. Chem. 87, 749 (1983).CrossRefGoogle Scholar
8Schwarz, R. B., Nash, P., and Turnbull, D., J. Mater. Res. 2, 456 (1987).CrossRefGoogle Scholar
9Jones, H., Rapid Solidification Processing in Metals and Alloys (Institution of Metallurgists, U.K., 1982).Google Scholar
10Kaufman, L. and Bernstein, H., Computer Calculations of Phase Diagrams (Academic Press, New York, 1970).Google Scholar
11Jackie, J., Rep. Prog. Phys. 49, 171 (1986).CrossRefGoogle Scholar
12Jackie, J., Phil. Mag. B 56, 113 (1987).CrossRefGoogle Scholar
13Hoffman, J.D., J. Chem. Phys. 29, 1192 (1958).CrossRefGoogle Scholar
14Uhlmann, D.R., in Materials Science Research, edited by Gray, T. J. (Plenum Press, New York, 1969), Vol. 4, p. 172.Google Scholar
15Miura, H., Isa, S., and Omuro, K., J. Non-Cryst. Solids 61 & 62, 163 (1984).CrossRefGoogle Scholar
16Surinach, S., Baro, M.D., Clavaguera-Mora, M.T., and Clavaguera, N., Thermochimica Acta 85, 175 (1985).CrossRefGoogle Scholar
17Perepezko, J.H. and Paik, J.S., J. Non-Cryst. Solids 61 & 62, 113 (1984).CrossRefGoogle Scholar
18Jones, D. R. H. and Chadwick, G. A., Phil. Mag. 24, 995 (1971).CrossRefGoogle Scholar
19Thompson, C. V. and Spaepen, F., Acta Metall. 27, 1855 (1979).CrossRefGoogle Scholar
20Dubey, K. S. and Ramachandrarao, P., Acta Metall. 32, 91 (1984).CrossRefGoogle Scholar
21Battezzati, L. and Garrone, E., Z. Metallkd. 75, 305 (1984).Google Scholar
22Kauzmann, W., Chem. Rev. 43, 219 (1948).CrossRefGoogle Scholar
23Sakka, S. and Mackenzie, J.D., J. Non-Cryst. Solids 6, 145 (1971).CrossRefGoogle Scholar
24Turnbull, D., Contemp. Phys. 10, 473 (1969); J. Non-Cryst. Solids 102, 117 (1988).CrossRefGoogle Scholar
25Chen, H. S. and Turnbull, D., J. Appl. Phys. 38, 3646 (1967).CrossRefGoogle Scholar
26Turnbull, D., J. Appl. Phys. 21, 1022 (1950).CrossRefGoogle Scholar
27Jackie, J., Phil. Mag. B 44, 533 (1981).CrossRefGoogle Scholar
28Jackie, J., Physica 127B, 79 (1984).CrossRefGoogle Scholar
29Davies, R. O. and Jones, G. O., Adv. Phys. 2, 370 (1953).CrossRefGoogle Scholar
30Baker, J. C. and Cahn, J. W., in Solidification (American Society for Metals, Metals Park, OH, 1971), p. 23.Google Scholar