Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T10:49:00.722Z Has data issue: false hasContentIssue false

Glucomannan asymmetric membranes for wound dressing

Published online by Cambridge University Press:  30 January 2019

Giovana Maria Genevro
Affiliation:
School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, SP 13083-852, Brazil
Reginaldo Jose Gomes Neto
Affiliation:
School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, SP 13083-852, Brazil
Letícia de Almeida Paulo
Affiliation:
Environmental, Chemical and Pharmaceutical Sciences Institute, Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP 09913-030, Brazil
Patrícia Santos Lopes
Affiliation:
Environmental, Chemical and Pharmaceutical Sciences Institute, Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP 09913-030, Brazil
Mariana Agostini de Moraes
Affiliation:
Environmental, Chemical and Pharmaceutical Sciences Institute, Department of Chemical Engineering, Universidade Federal de São Paulo, Diadema, SP 09913-030, Brazil
Marisa Masumi Beppu*
Affiliation:
School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, SP 13083-852, Brazil
*
a)Address all correspondence to this author. e-mail: beppu@feq.unicamp.br
Get access

Abstract

Asymmetric membranes present promising characteristics for wound dressing applications. A porous structure uptakes the wound exudate, whereas an occlusive layer (upper film) inhibits the microbial penetration and prevents an excessive loss of water. Konjac glucomannan (KGM) is a natural polysaccharide that has been investigated as wound dressings in the form of films, sponges, and hydrogels due to its flexibility, swelling capacity, biocompatibility, and low cost. However, there are no studies on literature regarding the development of KGM asymmetric membranes. In this study, we investigated a new casting–freezing process for the production of KGM asymmetric membranes. The scanning electron microscopy and thermogravimetric analyses indicated an asymmetric morphology and a good thermal stability of the membrane samples, respectively. Moreover, biological, mechanical, and fluid-handling capacity tests showed that the membrane is biocompatible and resistant to handling structure, which was also able to retain the ideal moist conditions for wound healing.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019. This is a work of the U.S. Government and is not subject to copyright protection in the United States. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors contributed equally to this work.

This article has been corrected since its original publication. See doi:10.1557/jmr.2019.315.

References

Morgado, P.I., Aguiar-Ricardo, A., and Correia, I.J.: Asymmetric membranes as ideal wound dressings: An overview on production methods, structure, properties, and performance relationship. J. Membr. Sci. 490, 139 (2015).CrossRefGoogle Scholar
Whittam, A.J., Maan, Z.N., Duscher, D., Wong, V.W., Barrera, J.A., Januszyk, M., and Gurtner, G.C.: Challenges and opportunities in drug delivery for wound healing. Adv. Wound Care 5, 79 (2016).CrossRefGoogle ScholarPubMed
Koehler, J., Brandl, F.P., and Goepferich, A.M.: Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J. 100, 1 (2018).CrossRefGoogle Scholar
Pachuau, L.: Recent developments in novel drug delivery systems for wound healing. Expet Opin. Drug Deliv. 12, 1895 (2015).CrossRefGoogle ScholarPubMed
Boateng, J.S., Matthews, K.H., Stevens, H.N.E., and Eccleston, G.M.: Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 97, 2892 (2008).CrossRefGoogle ScholarPubMed
Xu, R., Xia, H., He, W., Li, Z., Zhao, J., Liu, B., Wang, Y., Lei, Q., Kong, Y., Bai, Y., Yao, Z., Yan, R., Li, H., Zhan, R., Yang, S., Luo, G., and Wu, J.: Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci. Rep. 6, 24596 (2016).CrossRefGoogle ScholarPubMed
Hinrichs, W.L.J., Lommen, E., Wildevuur, C.R.H., and Feijen, J.: Fabrication and characterization of an asymmetric polyurethane membrane for use as a wound dressing. J. Appl. Biomater. 3, 287 (1992).CrossRefGoogle ScholarPubMed
Chen, Y., Yan, L., Yuan, T., Zhang, Q., and Fan, H.: Asymmetric polyurethane membrane with in situ-generated nano-TiO2 as wound dressing. J. Appl. Polym. Sci. 119, 1532 (2011).CrossRefGoogle Scholar
Mi, F.L., Wu, Y.B., Shyu, S.S., Schoung, J.Y., Huang, Y.B., Tsai, Y.H., and Hao, J.Y.: Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. J. Biomed. Mater. Res. 59, 438 (2002).CrossRefGoogle ScholarPubMed
Mi, F.L., Wu, Y.B., Shyu, S.S., Chao, A.C., Lai, J.Y., and Su, C.C.: Asymmetric chitosan membranes prepared by dry/wet phase separation: A new type of wound dressing for controlled antibacterial release. J. Membr. Sci. 212, 237 (2003).CrossRefGoogle Scholar
Morgado, P.I., Lisboa, P.F., Ribeiro, M.P., Migue, S.P., Simoes, P.C., Correia, I.J., and Aguiar-Ricardo, A.: Poly(vinyl alcohol)/chitosan asymmetrical membranes: Highly controlled morphology toward the ideal wound dressing. J. Membr. Sci. 469, 262 (2014).CrossRefGoogle Scholar
Tang, C., Guan, Y., Yao, S., and Zhu, Z.: Preparation of drug-loaded asymmetric chitosan films towards wound dressing using supercritical solution impregnation. Acta Polym. Sin. 6, 774 (2014).Google Scholar
Xu, H., Chang, J., Chen, Y., Fan, H., and Shi, B.: Asymmetric polyurethane membrane with inflammation-responsive antibacterial activity for potential wound dressing application. J. Mater. Sci. 48, 6625 (2013).CrossRefGoogle Scholar
Xie, Y., Yi, Z-X., Wang, J-X., Hou, T-G., and Jiang, Q.: Carboxymethyl konjac glucomannan—Crosslinked chitosan sponges for wound dressing. Int. J. Biol. Macromol. 112, 12251233 (2018).CrossRefGoogle ScholarPubMed
Mamani Chambi, H.N. and Ferreira Grosso, C.R.: Mechanical and water vapor permeability properties of biodegradables films based on methylcellulose, glucomannan, pectin and gelatin. Cienc. Tecnol. Aliment. 31, 739 (2011).CrossRefGoogle Scholar
Shahbuddin, M., MacNeil, S., and Rimmer, S.: Synthesis and preparation of konjac glucomannan hydrogel for wound healing. J. Tissue Eng. Regener. Med. 6, 1 (2012).Google Scholar
Huang, Y-C., Chu, H-W., Huang, C-C., Wu, W-C., and Tsai, J-S.: Alkali-treated konjac glucomannan film as a novel wound dressing. Carbohydr. Polym. 117, 778 (2015).CrossRefGoogle ScholarPubMed
Du, X., Yang, L., Ye, X., and Li, B.: Antibacterial activity of konjac glucomannan/chitosan blend films and their irradiation-modified counterparts. Carbohydr. Polym. 92, 1302 (2013).CrossRefGoogle ScholarPubMed
Ni, X., Ke, F., Xiao, M., Wu, K., Kuang, Y., Corke, H., and Jiang, F.: The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels. Int. J. Biol. Macromol. 92, 1130 (2016).CrossRefGoogle ScholarPubMed
Luo, X., He, P., and Lin, X.: The mechanism of sodium hydroxide solution promoting the gelation of Konjac glucomannan (KGM). Food Hydrocolloids 30, 92 (2013).CrossRefGoogle Scholar
Li, Z., Su, Y., Xie, B., Liu, X., Gao, X., and Wang, D.: A novel biocompatible double network hydrogel consisting of konjac glucomannan with high mechanical strength and ability to be freely shaped. J. Mater. Chem. B 3, 1769 (2015).CrossRefGoogle Scholar
ASTM: D882-02, Standard Test Method for Tensile Properties of Thin Plastic Sheeting (1995).Google Scholar
B. S. EN: 13726-1:2002, Test methods for primary wound dressings: Moisture Vapor Transmission Rate Permeable Film Dressings (2002).Google Scholar
Thomas, S. and Young, S.: Exudate-handling mechanisms of two foam-film dressings. J. Wound Care 17, 309 (2008).CrossRefGoogle ScholarPubMed
Riss, T.L., Moravec, R.A., Niles, A.L., Duellman, S., Benink, H.A., Worzella, T.J., and Minor, L.: In eds., Sittampalam, G.S., Coussens, N.P., Brimacombe, K., Grossman, A., Arkin, M., Auld, D., Austin, C., Baell, J., Bejcek, B., Caaveiro, J.M.M., Chung, T.D.Y., Dahlin, J.L., Devanaryan, V., Foley, T.L., Glicksman, M., Hall, M.D., Haas, J.V., Inglese, J., Iversen, P.W., Kahl, S.D., Kales, S.C., Lal-Nag, M., Li, Z., McGee, J., McManus, O., Riss, T., Trask, O.J.O.J., Weidner, J.R., Wildey, M.J., Xia, M., and Xu, X. (Bethesda, MD, 2004).Google Scholar
I.S.O. 10993-5 (2009).Google Scholar
Ponce, A.G., Fritz, R., del Valle, C., and Roura, S.I.: Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT - Food Sci. Technol. 36, 679 (2003).CrossRefGoogle Scholar
Wittaya-areekul, S. and Prahsarn, C.: Development and in vitro evaluation of chitosan-polysaccharides composite wound dressings. Int. J. Pharm. 313, 123 (2006).CrossRefGoogle ScholarPubMed
Hollister, S.J.: Porous scaffold design for tissue engineering (vol 4, pg 518, 2005). Nat. Mater. 5, 590 (2006).CrossRefGoogle Scholar
Yuan, N-Y., Lin, Y-A., Ho, M-H., Wang, D-M., Lai, J-Y., and Hsieh, H-J.: Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydr. Polym. 78, 349 (2009).CrossRefGoogle Scholar
Kita, M., Ogura, Y., Honda, Y., Hyon, S.H., Cha, W.I., and Ikada, Y.: Evaluation of polyvinyl-alcohol hydrogel as a soft contact-lens material. Graefe’s Arch. Clin. Exp. Ophthalmol. 228, 533 (1990).CrossRefGoogle ScholarPubMed
Ma, R. and Xiong, D.: Synthesis and properties of physically crosslinked poly(vinyl alcohol) hydrogels. J. China Univ. Min. Technol. 18, 4 (2008).CrossRefGoogle Scholar
Yu, H., Huang, Y., Ying, H., and Xiao, C.: Preparation and characterization of a quaternary ammonium derivative of konjac glucomannan. Carbohydr. Polym. 69, 29 (2007).CrossRefGoogle Scholar
Liu, L., Hu, D., Xu, G., Shou, L., and Yao, J.: Fabrication and evaluation of polyurethane-based asymmetric membranes. J. Mater. Sci. 48, 1902 (2013).CrossRefGoogle Scholar
Elsner, J.J. and Zilberman, M.: Novel antibiotic-eluting wound dressings: An in vitro study and engineering aspects in the dressing’s design. J. Tissue Viability 19, 54 (2010).CrossRefGoogle Scholar
Wang, K. and He, Z.M.: Alginate-konjac glucomannan-chitosan beads as controlled release matrix. Int. J. Pharm. 244, 117 (2002).CrossRefGoogle ScholarPubMed
Silver, F.H., Freeman, J.W., and DeVore, D.: Viscoelastic properties of human skin and processed dermis. Skin Res. Technol. 7, 18 (2001).CrossRefGoogle ScholarPubMed
Ní Annaidh, A., Bruyère, K., Destrade, M., Gilchrist, M.D., and Otténio, M.: Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 5, 139 (2012).CrossRefGoogle ScholarPubMed
Hansen, B. and Jemec, G.B.: The mechanical properties of skin in osteogenesis imperfecta. Arch. Dermatol. 138, 909 (2002).CrossRefGoogle ScholarPubMed
Banker Gilbert, S.: Film coating theory and practice. J. Pharm. Sci. 55, 81 (1966).CrossRefGoogle Scholar
Yannas, I.V., Burke, J.F., Warpehoski, M., Stasikelis, P., Skrabut, E.M., Orgill, D.P., and Giard, D.: Biomaterials: Interfacial Phenomena and Applications (American Chemical Society, Washington DC, 1982); pp. 475481.CrossRefGoogle Scholar
Ruiz-Cardona, L., Sanzgiri, Y.D., Benedetti, L.M., Stella, V.J., and Topp, E.M.: Application of benzyl hyaluronate membranes as potential wound dressings: Evaluation of water vapour and gas permeabilities. Biomaterials 17, 1639 (1996).CrossRefGoogle ScholarPubMed
Lamke, L.O., Nilsson, G.E., and Reithner, H.L.: The evaporative water loss from burns and the water-vapour permeability of grafts and artificial membranes used in the treatment of burns. Burns 3, 159 (1977).CrossRefGoogle Scholar
Zhu, W., Li, J., Lei, J., Li, Y., Chen, T., Duan, T., Yao, W., Zhou, J., Yu, Y., and Liu, Y.: Silver nanoparticles incorporated konjac glucomannan-montmorillonite nacre-like composite films for antibacterial applications. Carbohydr. Polym. 197, 253 (2018).CrossRefGoogle ScholarPubMed
Lu, J., Wang, X., and Xiao, C.: Preparation and characterization of konjac glucomannan/poly(diallydimethylammonium chloride) antibacterial blend films. Carbohydr. Polym. 73, 427 (2008).CrossRefGoogle Scholar
Spolidorio, D.M.P. and Duque, C.: Microbiologia e Imunologia Geral e Odontológica: Série Abeno: Odontologia Essencial—Parte Básica, Vol. 2 (Artes Médicas Editora, Sao Paulo, Brazil, 2013).Google Scholar