Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T05:28:09.899Z Has data issue: false hasContentIssue false

Gold nanowires with high aspect ratio and morphological purity: Synthesis, characterization, and evaluation of parameters

Published online by Cambridge University Press:  03 January 2013

Elcin Dertli
Affiliation:
Micro and Nanotechnology Program, Middle East Technical University, 06800 Ankara, Turkey
Sahin Coskun
Affiliation:
Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
Emren Nalbant Esenturk*
Affiliation:
Micro and Nanotechnology Program, Middle East Technical University, Ankara, Turkey; and Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
*
a)Address all correspondence to this author. e-mail: emren@metu.edu.tr
Get access

Abstract

In this study, gold (Au) nanowires were synthesized with a modified hydrothermal process, and high structural purity and control over Au nanowire diameter were achieved. Parametric study was performed to examine the effect of surfactant concentration, reaction time, and temperature on the quality of the synthesized products. The optimum conditions were determined for the synthesis with two different surfactant molecules, namely hexamethylenetetramine and ethylenediaminetetraacetic acid. Au nanowires synthesized under optimum conditions have high aspect ratio (diameters in the range of 50–110 nm and lengths in micrometers) with high structural purity and are potentially useful for applications such as surface-enhanced Raman scattering spectroscopy and transparent conducting electrodes for optoelectronic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rycenga, M., Kim, M.H., Camargo, P.H.C., Cobley, C., Li, Z.Y., and Xia, Y.: Surface-enhanced Raman scattering: Comparison of three different molecules on single-crystal nanocubes and nanospheres of silver. J. Phys. Chem. A 113, 3932 (2009).CrossRefGoogle ScholarPubMed
Tian, Z.Q., Ren, B., and Wu, D.Y.: Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 106, 9463 (2002).CrossRefGoogle Scholar
Eustis, S. and El-Sayed, M.A.: Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209 (2006).CrossRefGoogle ScholarPubMed
Rupprechter, G.: Catalysis by noble metal nanoparticles supported on thin-oxide films, in Model Systems in Catalysis, edited by Rioux, R. (Springer-Verlag, New York, 2010), p. 319.CrossRefGoogle Scholar
Huang, X., Jain, P.K., El-Sayed, I.H., and El-Sayed, M.A.: Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2, 681 (2007).CrossRefGoogle ScholarPubMed
Liu, Z. and Searson, P.C.: Single nanoporous gold nanowire sensors. J. Phys. Chem. B 110, 4318 (2006).CrossRefGoogle ScholarPubMed
Yogeswaran, U. and Chen, S.M.: A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8, 290 (2008).CrossRefGoogle ScholarPubMed
Lee, J.Y., Connor, S.T., Cui, Y., and Peumans, P.: Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689 (2008).CrossRefGoogle ScholarPubMed
Nadarajah, A., Word, R.C., Meiss, J., and Konenkamp, R.: Flexible inorganic nanowire light-emitting diode. Nano Lett. 8, 534 (2008).CrossRefGoogle ScholarPubMed
Rosamond, M.C., Gallant, A.J., Atherton, J.J., Petty, M.C., Kolosov, O., and Zeze, D.A.: Transparent gold nanowire electrodes, in 11th IEEE Conference on Nanotechnology (IEEE-NANO), August 15–18, 2011, p. 604.Google Scholar
Coskun, S., Aksoy, B., and Unalan, H.E.: Polyol synthesis of silver nanowires: An extensive parametric study. Cryst. Growth Des. 11, 4963 (2011).CrossRefGoogle Scholar
Mazur, M.: Electrochemically prepared silver nanoflakes and nanowires. Electrochem. Commun. 6, 400 (2004).CrossRefGoogle Scholar
Xu, J., Hu, J., Peng, C., Liu, H., and Hu, Y.: A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant. J. Colloid Interface Sci. 298, 689 (2006).CrossRefGoogle Scholar
Zou, K., Zhang, X.H., Duan, X.F., Meng, X.M., and Wu, S.K.: Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation. J. Cryst. Growth 273, 285 (2004).CrossRefGoogle Scholar
Berchmans, S., Nirmal, R.G., Prabaharan, G., Madhu, S., and Yegnaraman, V.: Templated synthesis of silver nanowires based on the layer-by-layer assembly of silver with dithiodipropionic acid molecules as spacers. J. Colloid Interface Sci. 303, 604 (2006).CrossRefGoogle ScholarPubMed
Halder, A. and Ravishankar, N.: Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv. Mater. 19, 1854 (2007).CrossRefGoogle Scholar
Forrer, P., Schlottig, F., Siegenthaler, H., and Textor, M.: Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique. J. Appl. Electrochem. 30, 533 (2000).CrossRefGoogle Scholar
Pazos-Perez, N., Baranov, D., Irsen, S., Hilgendorff, M., Liz-Marzan, L.M., and Giersig, M.: Synthesis of flexible, ultrathin gold nanowires in organic media. Langmuir 24, 9855 (2008).CrossRefGoogle ScholarPubMed
Tsuji, M., Hashimoto, M., Nishizawa, Y., and Tsuji, T.: Synthesis of gold nanorods and nanowires by a microwave–polyol method. Mater. Lett. 58, 2326 (2004).CrossRefGoogle Scholar
Kim, F., Sohn, K., Wu, J., and Huang, J.: Chemical synthesis of gold nanowires in acidic solutions. J. Am. Chem. Soc. 130, 14442 (2008).CrossRefGoogle ScholarPubMed
Kim, J.U., Cha, S.H., Shin, K., Jho, J.Y., and Lee, J.C.: Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions. Adv. Mater. 16, 459 (2004).CrossRefGoogle Scholar
Liu, J., Duan, J.L., Toimil-Molares, E., Karim, S., Cornelius, T.W., Dobrev, D., Yao, H.J., Sun, Y.M., Hou, M.D., Mo, D., Wang, Z.G., and Neumann, R.: Electrochemical fabrication of single-crystalline and polycrystalline Au nanowires: The influence of deposition parameters. Nanotechnology 17, 1922 (2006).CrossRefGoogle Scholar
Gu, J.L., Shi, J.L., Xiong, L.M., Chen, H.R., Li, L., and Ruan, M.L.: A new strategy to incorporate high density gold nanowires into the channels of mesoporous silica thin films by electroless deposition. Solid State Sci. 6, 747 (2004).CrossRefGoogle Scholar
Patolsky, F., Weizmann, Y., Lioubashevski, O., and Willner, I.: Au-nanoparticle nanowires based on DNA and polylysine templates. Angew. Chem. Int. Ed. Engl. 41, 2323 (2002).3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Pérez‐Juste, J., Liz‐Marzán, L., Carnie, S., Chan, D.Y.C., and Mulvaney, P.: Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv. Funct. Mater. 14, 571 (2004).CrossRefGoogle Scholar
Esumi, K., Matsuhisa, K., and Torigoe, K.: Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template. Langmuir 11, 3285 (1995).CrossRefGoogle Scholar
Kim, Y.J. and Song, J.H.: Practical synthesis of Au nanowires via a simple photochemical route. Bull. Korean Chem. Soc. 27, 633 (2006).Google Scholar
Jana, N.R., Gearheart, L., and Murphy, C.J.: Wet chemical synthesis high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065 (2001).CrossRefGoogle Scholar
Sinha, A.K., Basu, M., Sarkar, S., Pradhan, M., and Pal, T.: Electrostatic field force directed gold nanowires from anion exchange resin. Langmuir 26, 17419 (2010).CrossRefGoogle ScholarPubMed
Akgun, M.C., Kalay, Y.E., and Unalan, H.E.: Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt. J. Mater. Res. 27, 1445 (2012).CrossRefGoogle Scholar
Wang, Z.L.: ZnO nanowire and nanobelt platform for nanotechnology. Mat. Sci. Eng., R. 64, 33 (2009).CrossRefGoogle Scholar
Ismail, A.A., El-Midany, A., Abdel-Aal, E.A., and El-Shall, H.: Application of statistical design to optimize the preparation of ZnO nanoparticles via hydrothermal technique. Mater. Lett. 59, 1924 (2005).CrossRefGoogle Scholar
Ko, S.H., Lee, D., Kang, H.W., Nam, K.H., Yeo, J.Y., Hong, S.J., Grigoropoulos, C.P., and Sung, H.J.: Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 11, 666 (2011).CrossRefGoogle ScholarPubMed
Savu, R., Parra, R., Joanni, E., Jancar, B., Eliziario, S.A., de Camargo, R., Bueno, P.R., Varela, J.A., Longo, E., and Zaghete, M.A.: The effect of cooling rate during hydrothermal synthesis of ZnO nanorods. J. Cryst. Growth 311, 4102 (2009).CrossRefGoogle Scholar
Hu, J., Li, F., Wang, K., Han, D., Zhang, Q., Yuan, J., and Niu, L.: One-step synthesis of graphene–AuNPs by HMTA and the electrocatalytical application for O2 and H2O2. Talanta 93, 345 (2012).CrossRefGoogle ScholarPubMed
Ali Umar, A. and Oyama, M.: High-yield synthesis of tetrahedral-like gold nanotripods using an aqueous binary mixture of cetyltrimethylammonium bromide and hexamethylenetetramine. Cryst. Growth Des. 9, 1146 (2008).CrossRefGoogle Scholar
Whetten, R.L., Khoury, J.T., Alvarez, M.M., Murthy, S., Vezmar, I., Wang, Z., Stephens, P.W., Cleveland, C.L., Luedtke, W., and Landman, U.: Nanocrystal gold molecules. Adv. Mater. 8, 428 (1996).CrossRefGoogle Scholar
Kuo, C.H. and Huang, M.H.: Synthesis of branched gold nanocrystals by a seeding growth approach. Langmuir 21, 2012 (2005).CrossRefGoogle ScholarPubMed
Zhang, X.Y., Zhang, L.D., Lei, Y., Zhao, L.X., and Mao, Y.Q.: Fabrication and characterization of highly ordered Au nanowire arrays. J. Mater. Chem. 11, 1732 (2001).CrossRefGoogle Scholar
Li, C.L., Su, Y., Lv, X.Y., Xia, H.L., and Wang, Y.J.: Electrochemical acetylene sensor based Au/MWCNTs. Sens. Actuators, B 149, 427 (2010).CrossRefGoogle Scholar
Zhang, H.T., Ding, J., Chow, G.M., Ran, M., and Yi, J.B.: Engineering magnetic properties of Ni nanoparticles by non-magnetic cores. Chem. Mater. 21, 5222 (2009).CrossRefGoogle Scholar
, G., Ji, D., Qian, G., Qi, Y., Wang, X., and Suo, J.: Gold nanoparticles mesoporous materials showing catalytic selective oxidation cyclohexane using oxygen. Appl. Catal., A 280, 175 (2005).CrossRefGoogle Scholar
Xiao, J. and Qi, L.: Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale 3, 1383 (2011).CrossRefGoogle ScholarPubMed
Burda, C., Chen, X., Narayanan, R., and El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 (2005).CrossRefGoogle ScholarPubMed
Pei, L.H., Mori, K., and Adachi, M.: Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4 and the shape stabilization. Langmuir 20, 7837 (2004).CrossRefGoogle ScholarPubMed
Knauth, P. and Schoonman, J.: Nanostructured Materials: Selected Synthesis Methods, Properties, and Applications (Kluwer Academic Pub, Norwell, MA, 2002).Google Scholar