Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T22:30:18.843Z Has data issue: false hasContentIssue false

GO/TiO2 composites as a highly active photocatalyst for the degradation of methyl orange

Published online by Cambridge University Press:  14 April 2020

Chunling Lin*
Affiliation:
School of Chemistry and Chemical Engineering, Xi'an Shi'you University, Xi'an 710065, China
Yifeng Gao
Affiliation:
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Jiaoxia Zhang*
Affiliation:
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Dan Xue
Affiliation:
School of Chemistry and Chemical Engineering, Xi'an Shi'you University, Xi'an 710065, China
Hua Fang
Affiliation:
School of Chemistry and Chemical Engineering, Xi'an Shi'you University, Xi'an 710065, China
Jiayong Tian
Affiliation:
School of Chemistry and Chemical Engineering, Xi'an Shi'you University, Xi'an 710065, China
Chunli Zhou
Affiliation:
School of Chemistry and Chemical Engineering, Xi'an Shi'you University, Xi'an 710065, China
Chanjuan Zhang
Affiliation:
School of Chemistry and Chemical Engineering, Xi'an Shi'you University, Xi'an 710065, China
Yuqing Li*
Affiliation:
Testing Center, Yangzhou University, Yangzhou 225009, China
Honggang Li
Affiliation:
China Railway Design Corporation, Tianjin 300251, China
*
a)Address all correspondence to these authors. e-mail: chunling405@xsyu.edu.cn
Get access

Abstract

Reduced graphene oxide supported titanium dioxide (GO/TiO2) heterojunction composites as highly active photocatalysts were synthesized via simple ultrasonic mixing and hydrothermal reaction using TiCl3 and GO as precursors. Their structure and morphology were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectra, UV-vis spectroscopy, and thermogravimetic analysis. The GO/TiO2 heterojunction composites were used to degrade methyl orange (MO). The adsorption and photocatalytic degradation rate of the prepared GO/TiO2 composites increased by nearly three times compared with that of pristine TiO2 or GO, which reached up 90%, to degrade MO after 4 h, which provides a simple method to obtain photocatalytic materials.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Perera, S.D., Mariano, R.G., Vu, K., Nour, N., Seitz, O., Chabal, Y., and Balkus, K.J. Jr.: Hydrothermal synthesis of graphene–TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2, 949 (2012).CrossRefGoogle Scholar
Guo, F., Shi, W., Lin, X., and Che, G.: Hydrothermal synthesis of graphitic carbon nitride–BiVO4 composites with enhanced visible light photocatalytic activities and the mechanism study. J. Phys. Chem. Solids 75, 1217 (2014).CrossRefGoogle Scholar
Huo, Y., Hou, R., Chen, X., Yin, H., Gao, Y., and Li, H.: BiOBr visible-light photocatalytic films in a rotating disk reactor for the degradation of organics. J. Mater. Chem. A 3, 14801 (2015).CrossRefGoogle Scholar
Wang, Q., Dong, S., Zhang, D., Yu, C., Lu, J., Wang, D., and Sun, J.: Magnetically recyclable visible-light-responsive MoS2@Fe3O4 photocatalysts targeting efficient wastewater treatment. J. Mater. Sci. 53, 1135 (2018).CrossRefGoogle Scholar
Zhang, Z., Zhang, J., Li, S., Liu, J., Dong, M., Li, Y., Lu, N., Lei, S., Tang, J., and Fan, J.: Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Composites, Part B 176, 107338 (2019).10.1016/j.compositesb.2019.107338CrossRefGoogle Scholar
Wang, L., Hu, H., Xu, J., Zhu, S., Ding, A., and Deng, C.: WO3 nanocubes: Hydrothermal synthesis, growth mechanism, and photocatalytic performance. J. Mater. Res. 34, 2955 (2019).CrossRefGoogle Scholar
Wang, W., Fang, J., Shao, S., Lai, M., and Lu, C.: Compact and uniform TiO2@g-C3N4 core–shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Appl. Catal., B 217, 57 (2017).CrossRefGoogle Scholar
Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., and Ye, J.: Nano‐photocatalytic materials: Possibilities and challenges. Adv. Mater. 24, 229 (2012).CrossRefGoogle ScholarPubMed
Liu, S., Wang, Y., Ma, L., and Zhang, H.: Ni2P/ZnS(CdS) core/shell composites with their photocatalytic performance. J. Mater. Res. 33, 3580 (2018).CrossRefGoogle Scholar
Wang, H., Zhu, K., Yan, L., Wei, C., Zhang, Y., Gong, C., Guo, J., Zhang, J., Zhang, D., and Zhang, J.: Efficient and scalable high-quality graphene nanodot fabrication through confined lattice plane electrochemical exfoliation. Chem. Commun. 55, 5805 (2019).CrossRefGoogle ScholarPubMed
Wei, Y., Shi, Y., Jiang, Z., Zhang, X., Chen, H., Zhang, Y., Zhang, J., and Gong, C.: High performance and lightweight electromagnetic wave absorbers based on TiN/RGO flakes. J. Alloys Compd. 810, 151950 (2019).CrossRefGoogle Scholar
Guo, Y., Ruan, K., Yang, X., Ma, T., Kong, J., Wu, N., Zhang, J., Gu, J., and Guo, Z.: Constructing fully carbon-based fillers with hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites. J. Mater. Chem. C 7, 7035 (2019).CrossRefGoogle Scholar
Zhang, W., Wang, C., Liu, X., and Li, J.: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017).CrossRefGoogle Scholar
Lang, X., Chen, X., and Zhao, J.: Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 43, 473 (2014).CrossRefGoogle ScholarPubMed
Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., and Bahnemann, D.W.: Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 114, 9919 (2014).CrossRefGoogle ScholarPubMed
Zhang, J., Yi, J., and Jiao, Y.: Preparation and application of water-soluble TiO2-ionic liquids hybrid nanomaterials. J. Inorg. Mater. 33, 577 (2018).Google Scholar
Guo, Y., Yang, X., Ruan, K., Kong, J., Dong, M., Zhang, J., Gu, J., and Guo, Z.: Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl. Mater. Interfaces 11, 25465 (2019).10.1021/acsami.9b10161CrossRefGoogle ScholarPubMed
Liang, C., Song, P., Ma, A., Shi, X., Gu, H., Wang, L., Qiu, H., Kong, J., and Gu, J.: Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution. Compos. Sci. Technol. 181, 107683 (2019).CrossRefGoogle Scholar
Liang, C., Song, P., Qiu, H., Zhang, Y., Ma, X., Qi, F., Gu, H., Kong, J., Cao, D., and Gu, J.: Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 11, 22590 (2019).CrossRefGoogle ScholarPubMed
Zhang, J., Zhang, W., Wei, L., Pu, L., Liu, J., Liu, H., Li, Y., Fan, J., Ding, T., and Guo, Z.: Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromol. Mater. Eng. 304, 1900374 (2019).CrossRefGoogle Scholar
Lyu, Z., Liu, B., Wang, R., and Tian, L.: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781 (2017).CrossRefGoogle Scholar
Thirugnanam, L., Kaveri, S., Dutta, M., Jaya, N.V., and Fukata, N.: Porous tubular rutile TiO2 nanofibers: Synthesis, characterization and photocatalytic properties. J. Nanosci. Nanotechnol. 14, 3034 (2014).CrossRefGoogle ScholarPubMed
Banerjee, S., Pillai, S.C., Falaras, P., O'shea, K.E., Byrne, J.A., and Dionysiou, D.D.: New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 5, 2543 (2014).CrossRefGoogle ScholarPubMed
Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S., Hamilton, J.W., Byrne, J.A., and O'shea, K.: A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125, 331 (2012).CrossRefGoogle Scholar
Wang, X., Utsumi, M., Yang, Y., Li, D., Zhao, Y., Zhang, Z., Feng, C., Sugiura, N., and Cheng, J.J.: Degradation of microcystin-LR by highly efficient AgBr/Ag3PO4/TiO2 heterojunction photocatalyst under simulated solar light irradiation. J. Phys. Chem. Lett. 325, 1 (2015).Google Scholar
Song, P., Liang, C., Wang, L., Qiu, H., Gu, H., Kong, J., and Gu, J.: Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos. Sci. Technol. 181, 107698 (2019).CrossRefGoogle Scholar
Yang, X., Fan, S., Li, Y., Guo, Y., Li, Y., Ruan, K., Zhang, S., Zhang, J., Kong, J., and Gu, J.: Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Composites, Part A 128, 105670 (2020).CrossRefGoogle Scholar
Liu, G., Zhao, Y., Sun, C., Li, F., Lu, G.Q., and Cheng, H.M.: Synergistic effects of B/N doping on the visible‐light photocatalytic activity of mesoporous TiO2. Angew. Chem., Int. Ed. 47, 4516 (2008).CrossRefGoogle ScholarPubMed
Kim, D.H., Hong, H.S., Kim, S.J., Song, J.S., and Lee, K.S.: Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying. J. Alloys Compd. 375, 259 (2004).CrossRefGoogle Scholar
Zhang, L., Li, X., Chang, Z., and Li, D.: Preparation, characterization and photoactivity of hollow N, Co co-doped TiO2/SiO2 microspheres. Mater. Sci. Semicond. Process. 14, 52 (2011).CrossRefGoogle Scholar
Devi, L.G. and Kavitha, R.: A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Appl. Catal., B 140, 559 (2013).CrossRefGoogle Scholar
Huang, F., Chen, D., Zhang, X.L., Caruso, R.A., and Cheng, Y.B.: Dual‐function scattering layer of submicrometer‐sized mesoporous TiO2 beads for high‐efficiency dye‐sensitized solar cells. Adv. Funct. Mater. 20, 1301 (2010).CrossRefGoogle Scholar
Wooh, S., Kim, T., Song, D., Lee, Y., Lee, T.K., Bergmann, V.W., Weber, S.A., Bisquert, J., Kang, Y.S., and Char, K.: Surface modification of TiO2 photoanodes with fluorinated self-assembled monolayers for highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7, 25741 (2015).CrossRefGoogle ScholarPubMed
Zhang, J., Liu, S., Yan, C., Wang, X., Wang, L., Yu, Y., and Li, S.: Abrasion properties of self-suspended hairy titanium dioxide nanomaterials. Appl. Nanosci. 7, 691 (2017).CrossRefGoogle Scholar
Xie, Y., Ali, G., Yoo, S.H., and Cho, S.O.: Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity. ACS Appl. Mater. Interfaces 2, 2910 (2010).CrossRefGoogle ScholarPubMed
Ismail, A.A., Abdelfattah, I., Helal, A., Al-Sayari, S., Robben, L., and Bahnemann, D.: Ease synthesis of mesoporous WO3–TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination. J. Hazard. Mater. 307, 43 (2016).CrossRefGoogle ScholarPubMed
Sheng, J., Tong, H., Xu, H., and Tang, C.: Preparation and photocatalytic activity of SnO2@TiO2 core–shell composites modified by Ag. Catal. Surv. Asia 20, 167 (2016).CrossRefGoogle Scholar
Zhang, J., Zhang, Z., Jiao, Y., Yang, H., Li, Y., Zhang, J., and Gao, P.: The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors. J. Power Sources 419, 99 (2019).CrossRefGoogle Scholar
Jiao, Y., Zhang, J., Liu, S., Liang, Y., Li, S., Zhou, H., and Zhang, J.: The graphene oxide ionic solvent-free nanofluids and their battery performances. Sci. Adv. Mater. 10, 1706 (2018).CrossRefGoogle Scholar
Paredes, J., Villar-Rodil, S., Martínez-Alonso, A., and Tascon, J.: Graphene oxide dispersions in organic solvents. Langmuir 24, 10560 (2008).CrossRefGoogle ScholarPubMed
Zhang, J., Li, P., Zhang, Z., Wang, X., Tang, J., Liu, H., Shao, Q., Ding, T., Umar, A., and Guo, Z.: Solvent-free graphene liquids: Promising candidates for lubricants without the base oil. J. Colloid Interface Sci. 542, 159 (2019).CrossRefGoogle ScholarPubMed
Guo, Y., Xu, G., Yang, X., Ruan, K., Ma, T., Zhang, Q., Gu, J., Wu, Y., Liu, H., and Guo, Z.: Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J. Mater. Chem. C 6, 3004 (2018).CrossRefGoogle Scholar
Li, Y., Jing, T., Xu, G., Tian, J., Dong, M., Shao, Q., Wang, B., Wang, Z., Zheng, Y., and Yang, C.: 3-D magnetic graphene oxide-magnetite poly(vinyl alcohol) nanocomposite substrates for immobilizing enzyme. Polymer 149, 13 (2018).10.1016/j.polymer.2018.06.046CrossRefGoogle Scholar
Sun, K., Dong, J., Wang, Z., Wang, Z., Fan, G., Hou, Q., An, L., Dong, M., Fan, R., and Guo, Z.: Tunable negative permittivity in flexible graphene/PDMS metacomposites. J. Phys. Chem. C 123, 23635 (2019).CrossRefGoogle Scholar
Idrees, M., Batool, S., Kong, J., Zhuang, Q., Liu, H., Shao, Q., Lu, N., Feng, Y., Wujcik, E.K., and Gao, Q.: Polyborosilazane derived ceramics-nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochim. Acta 296, 925 (2019).CrossRefGoogle Scholar
Murugadoss, V., Lin, J., Liu, H., Mai, X., Ding, T., Guo, Z., and Angaiah, S.: Optimizing graphene content in a NiSe/graphene nanohybrid counter electrode to enhance the photovoltaic performance of dye-sensitized solar cells. Nanoscale 11, 17579 (2019).CrossRefGoogle Scholar
He, Y., Chen, Q., Liu, H., Zhang, L., Wu, D., Lu, C., OuYang, W., Jiang, D., Wu, M., and Zhang, J.: Friction and wear of MoO3/graphene oxide modified glass fiber reinforced epoxy nanocomposites. Macromol. Mater. Eng. 304, 1900166 (2019).CrossRefGoogle Scholar
Ma, L., Zhu, Y., Feng, P., Song, G., Huang, Y., Liu, H., Zhang, J., Fan, J., Hou, H., and Guo, Z.: Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent. Composites, Part B 176, 107078 (2019).CrossRefGoogle Scholar
Kumar, B., Verma, D.K., Singh, A.K., Kavita, , Shukla, N., and Rastogi, R.B.: Nanohybrid Cu@C: Synthesis, characterization and application in enhancement of lubricity. Compos. Interfaces, 1 (2019) doi.org/10.1080/09276440.2019.1697134.Google Scholar
Lou, C., Jing, T., Tian, J., Zheng, Y., Zhang, J., Dong, M., Wang, C., Hou, C., Fan, J., and Guo, Z.: 3-Dimensional graphene/Cu/Fe3O4 composites: Immobilized laccase electrodes for detecting bisphenol A. J. Mater. Res. 34, 2964 (2019).CrossRefGoogle Scholar
He, Y., Chen, Q., Yang, S., Lu, C., Feng, M., Jiang, Y., Cao, G., Zhang, J., and Liu, C.: Micro-crack behavior of carbon fiber reinforced Fe3O4/graphene oxide modified epoxy composites for cryogenic application. Composites, Part A 108, 12 (2018).CrossRefGoogle Scholar
Liu, M., Meng, Q., Yang, Z., Zhao, X., and Liu, T.: Ultra-long-term cycling stability of an integrated carbon–sulfur membrane with dual shuttle-inhibiting layers of graphene “nets” and a porous carbon skin. Chem. Commun. 54, 5090 (2018).CrossRefGoogle Scholar
Gonçalves, B.S., Silva, L.M., de Souza, T.C., de Castro, V.G., Silva, G.G., Silva, B.C., Krambrock, K., Soares, R.B., Lins, V.F., and Houmard, M.: Solvent effect on the structure and photocatalytic behavior of TiO2-RGO nanocomposites. J. Mater. Res. 34, 3918 (2019).CrossRefGoogle Scholar
Yan, X., Yuan, X., Wang, J., Wang, Q., Zhou, C., Wang, D., Tang, H., Pan, J., and Cheng, X.: Construction of novel ternary dual Z-scheme Ag3VO4/C3N4/reduced TiO2 composite with excellent visible-light photodegradation activity. J. Mater. Res. 34, 2024 (2019).CrossRefGoogle Scholar
Labunov, V., Tabulina, L., Komissarov, I., Grapov, D., Prudnikova, E., Shaman, Y.P., Basaev, S., and Pavlov, A.: Features of the reduction of graphene from graphene oxide. Russ. J. Phys. Chem. A 91, 1088 (2017).CrossRefGoogle Scholar
Cao, B., Liu, H., Yang, L., Li, X., Liu, H., Dong, P., Mai, X., Hou, C., Wang, N., and Zhang, J.: Interfacial engineering for high-efficiency nanorod array-structured perovskite solar cells. ACS Appl. Mater. Interfaces. 11, 33770 (2019).CrossRefGoogle ScholarPubMed
Yang, L., Wang, X., Mai, X., Wang, T., Wang, C., Li, X., Murugadoss, V., Shao, Q., Angaiah, S., and Guo, Z.: Constructing efficient mixed-ion perovskite solar cells based on TiO2 nanorod array. J. Colloid Interface Sci. 534, 459 (2019).CrossRefGoogle ScholarPubMed
Zhang, L., Qin, M., Yu, W., Zhang, Q., Xie, H., Sun, Z., Shao, Q., Guo, X., Hao, L., and Zheng, Y.: Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J. Electrochem. Soc. 164, H1086 (2017).CrossRefGoogle Scholar
Zhang, L., Yu, W., Han, C., Guo, J., Zhang, Q., Xie, H., Shao, Q., Sun, Z., and Guo, Z.: Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J. Electrochem. Soc. 164, H651 (2017).CrossRefGoogle Scholar
Shindume, L., Zhao, Z., Wang, N., Liu, H., Umar, A., Zhang, J., Wu, T., and Guo, Z.: Enhanced photocatalytic activity of B, N-codoped TiO2 by a new molten nitrate process. J. Nanosci. Nanotechnol. 19, 839 (2019).CrossRefGoogle Scholar
Tian, J., Shao, Q., Zhao, J., Pan, D., Dong, M., Jia, C., Ding, T., Wu, T., and Guo, Z.: Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of rhodamine B. J. Colloid Interface Sci. 541, 18 (2019).CrossRefGoogle ScholarPubMed
Ma, L., Li, N., Wu, G., Song, G., Li, X., Han, P., Wang, G., and Huang, Y.: Interfacial enhancement of carbon fiber composites by growing TiO2 nanowires onto amine-based functionalized carbon fiber surface in supercritical water. Appl. Surf. Sci. 433, 560 (2018).CrossRefGoogle Scholar
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007).CrossRefGoogle Scholar
Zhang, J., Liang, Y., Wang, X., Zhou, H., Li, S., Zhang, J., Feng, Y., Lu, N., Wang, Q., and Guo, Z.: Strengthened epoxy resin with hyperbranched polyamine-ester anchored graphene oxide via novel phase transfer approach. Adv. Compos. Hybrid Mater. 1, 300 (2018).CrossRefGoogle Scholar