Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T00:15:05.190Z Has data issue: false hasContentIssue false

Grain growth behavior in Fe3Al alloys fabricated by different methods

Published online by Cambridge University Press:  03 March 2011

B.H. Rabin
Affiliation:
Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-2218
J.K. Wright
Affiliation:
Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-2218
R.N. Wright
Affiliation:
Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-2218
C.H. Sellers
Affiliation:
Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-2218
Get access

Abstract

Grain sizes were measured after various heat treatments in three Fe3Al alloys having similar composition that were fabricated using the techniques of ingot metallurgy (cast and wrought), hot extrusion of prealloyed powder, and hot isostatic pressing (HIP) of elemental powders. The ingot metallurgy (I/M) material exhibited normal grain growth behavior at temperatures above 750 °C, in agreement with previous observations. Both powder metallurgy (P/M) materials displayed unusual resistance to grain growth compared to the I/M alloy. In the case of the prealloyed P/M material, the initial (recrystallized) grain size was larger than the initial grain size of the I/M material, although little grain growth was observed for heat-treatment temperatures up to 1100 °C. At higher temperatures grain growth occurred at a rate comparable to that observed to the I/M alloy. The elemental powder P/M material exhibited similar grain growth behavior to the prealloyed P/M material, although the initial (as-HIPed) grain size was considerably smaller. Transmission electron microscopy (TEM) indicated that the grain growth resistance of the P/M materials could be attributed to grain boundary pinning by oxide particles presumed to originate from the powder particle surfaces. The difference in the stable grain size between the prealloyed and elemental powder P/M materials was attributed to the nature of the particle dispersions resulting from processing.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Atkinson, H. V., Acta Metall. 36 (3), 469 (1988).CrossRefGoogle Scholar
2Cahn, J. W., Acta Metall. 10, 789 (1962).CrossRefGoogle Scholar
3Zener, C. and Smith, C. S., Trans. AIME 175, 47 (1948).Google Scholar
4Hillert, M., Acta Metall. 36 (12), 3177 (1988).CrossRefGoogle Scholar
5Novikov, V. Y., Acta Metall. 27, 1461 (1979).Google Scholar
6Grest, G. S., Srolovitz, D. J., and Anderson, M. P., Acta Metall. 33, 509 (1985).CrossRefGoogle Scholar
7Higgins, G. T., Metall. Sci. 8, 143 (1974).CrossRefGoogle Scholar
8Martin, J. W. and Doherty, R. D., Stability of Microstructure in Metallic Systems (Cambridge University Press, New York, 1976), p. 221.Google Scholar
9Randle, V., Ralph, B., and Hansen, N., in Annealing Processes — Recovery, Recrystallization and Grain Growth, edited by Hansen, N.et al. (Risø National Laboratory, Roskilde, Denmark, 1986), p. 123.Google Scholar
10Kurtz, S. K. and Carpay, F. M. A., J. Appl. Phys. 51, 5725 (1980).CrossRefGoogle Scholar
11Kurtz, S. K. and Carpay, F. M. A., J. Appl. Phys. 51, 5745 (1980).Google Scholar
12Mondolfo, L. F., Aluminum Alloys: Structure and Properties (Butterworths, Boston, MA, 1976), p. 883.CrossRefGoogle Scholar
13Suga, M., Cross, J. L., Olson, G. B., and Vander Sande, J. B., in Rapid Solidification Processing: Principles and Technologies II edited by Mehrabian, R., Kear, B. H., and Cohen, M. (Claitor's, Baton Rouge, LA, 1980), p. 364.Google Scholar
14Kelley, T. F. and Vander Sande, J. B., in Rapid Solidification Processing: Principles and Technologies II, edited by Mehrabian, R., Kear, B. H., and Cohen, M. (Claitor's, Baton Rouge, LA, 1980), p. 100.Google Scholar
15Hsu, C., Ph.D. Thesis, Massachusetts Institute of Technology (1984).Google Scholar
16Korth, G. E., Wright, R. N., and Flinn, J. E., in Processing of Structural Metals by Rapid Solidification, edited by Froes, F. H. and Savage, S.J. (ASM INTERNATIONAL, Metals Park, OH, 1987), p. 469.Google Scholar
17Flinn, J. E., EGG-MS-9617 (Idaho National Engineering Laboratory, Idaho Falls, ID, 1991).Google Scholar
18Flinn, J. E., Bae, J. C., and Kelley, T. F., in Heat-Resistant Materials, edited by Natesan, K. and Tillack, D.J. (ASM INTERNATIONAL, Materials Park, OH, 1991), p. 35.Google Scholar
19Flinn, J. E., Shin, K., and Kelley, T. F., in Microstructure and Mechanical Properties of Alloy 718, 625, and Various Derivatives, edited by Loria, E. A. (The Minerals, Metals and Materials Society, Warrendale, PA, 1991), p. 251.Google Scholar
20Sellers, C. H. and Flinn, J. E., Industrial Heating 57, 38 (1990).Google Scholar
21Sellers, C. H., Flinn, J. E., and Fletcher, G. L., in Advances in Powder Metallurgy and Paniculate Materials-1992, edited by by Capus, J.M and German, R. M. (Metal Powder Industries Federation, Princeton, NJ, 1992), p. 25.Google Scholar
22Rabin, B. H. and Wright, R. N., Metall. Trans. 22A, 277 (1991).Google Scholar
23Rabin, B. H. and Wright, R. N., Metall. Trans. 23A, 35 (1992).CrossRefGoogle Scholar
24Knibloe, J. R., Wright, R. N., and Sikka, V. K., in 1990 Advances in Powder Metallurgy, edited by Andreotti, E. R. and McGeehan, P. J. (Metal Powder Industries Federation, Princeton, NJ, 1990), p. 219.Google Scholar
25Knibloe, J. R., Wright, R. N., Sikka, V. K., Baldwin, R. H., and Howell, C. R., Mater. Sci. Eng. A153, 382 (1992).CrossRefGoogle Scholar
26Fasching, A. A., Edwards, G. R., and David, S. A., ORNL/FMP-92/1 (Oak Ridge National Laboratory, 1992), pp. 247256.Google Scholar
27Fasching, A. A., Edwards, G. R., and David, S. A., ORNL/FMP-91/2 (Oak Ridge National Laboratory, 1992), pp. 201211.Google Scholar
28Sikka, V. K., McKamey, C. G., Howell, C. R., and Baldwin, R. H., ORNL/TM-11465 (Oak Ridge National Laboratory, Oak Ridge, TN, 1990).Google Scholar
29Rabin, B. H., Wright, R. N., Knibloe, J. R., Raman, R. V., and Rale, S. V., Mater. Sci. Eng. A153, 706 (1992).CrossRefGoogle Scholar
30Knibloe, J. R. and Wright, R. N., ORNL/FMP-92/1 (Oak Ridge National Laboratory, Oak Ridge, TN, 1992), pp. 207211.Google Scholar
31Rabin, B. H., Smolik, G. R., and Korth, G. E., Mater. Sci. Eng. A124, 1 (1990).CrossRefGoogle Scholar