Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T00:30:46.711Z Has data issue: false hasContentIssue false

Grain growth kinetics and microstructures of the high Tc GdBa2Cu3O7−δ superconductor

Published online by Cambridge University Press:  31 January 2011

M.W. Shin
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
T.M. Hare
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
A.I. Kingon
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
C.C. Koch
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
Get access

Abstract

Grain growth in the GdBa2Cu3O7−δ high Tc superconductor was investigated. The composition Gd1.09Ba1.91Cu3O7−δ, within the solid solubility region, was selected for the present grain growth study. Differential thermal analysis did not reveal any thermal event except the incongruent melting point, which is indicative of the absence of a liquid second phase during grain growth. The final densities of isothermally annealed samples ranged from 91.3% to 93.7% of theoretical density. The microstructure observation showed a greater grain aspect ratio in this material than in YBa2Cu3O7−δ. The average grain aspect ratio was about 4.7. A very low grain growth exponent of 0.07 was found in the isothermal annealing temperature range from 965 °C to 1020 °C. By comparison with the results on the YBa2Cu3O7−δ system previously reported, it was concluded that the grain growth kinetics in these materials are strongly controlled by the anisotropy of the grain boundary energy. The activation energy of grain growth was calculated to be about 77 kJ/mole.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Stuijts, A. J., Ceramic Microstructures, edited by Fulrath, R. M. and Pask, J. A. (Westview Press, Colorado, 1977), p. 1.Google Scholar
2Yan, M.F., Mater. Sci. Eng. 48, 53 (1981).CrossRefGoogle Scholar
3Brook, R. J., Treatise on Materials Science and Technology, edited by Wang, F.F. (Academic Press, New York, 1976), Vol. 9, p. 331.Google Scholar
4German, R. M., Liquid Phase Sintering (Plenum Press, New York, 1985), p. 147.CrossRefGoogle Scholar
5P. Beck, A., Kremer, J. C., Demer, L.J., and Holzworth, M. L., TMS-AIME 175, 372 (1948).Google Scholar
6Burke, J. E., Trans. AIME 180, 73 (1949).Google Scholar
7Turnbull, D., Trans. AIME 191, 661 (1951).Google Scholar
8Grey, E.A. and Higgins, G.T., Acta Metall. 21, 309 (1973).CrossRefGoogle Scholar
9Lay, K. W., J. Am. Ceram. Soc. 51, 373 (1968).CrossRefGoogle Scholar
10Nichols, F.A., J. Appl. Phys. 37, 4599 (1966).Google Scholar
11Liicke, K. and Detert, K., Acta Metall. 5, 628 (1957).Google Scholar
12Cahn, J. W., Acta Metall. 10, 789 (1962).Google Scholar
13Drolet, J. P. and Galibos, A., Metall. Trans. 2, 53 (1971).CrossRefGoogle Scholar
14Fullman, R. L., Metal Interfaces, edited by Brick, R. M. (American Society for Metals, Metals Park, OH, 1952), p. 179.Google Scholar
15Beck, P. A. and Sperry, P.R., Trans. AIME 185, 2401 (1949).Google Scholar
16Grest, G. S., Srolovitz, D. J., and Anderson, M. P., Acta Metall. 33, 509 (1985).Google Scholar
17Shin, M. W., Hare, T. M., Kingon, A. I., and Koch, C. C., J. Mater. Res. 6, 2026 (1991).CrossRefGoogle Scholar
18Blendell, J.E., Wong-Ng, W., Chiang, C.K., Shull, R.D., and Fuller, E. R. Jr., High Temperature Superconducting Compounds: Processing and Related Properties, edited by Whang, S. H. and Dasgupta, A. (The Minerals, Metals, and Materials Society, 1989), p. 193.Google Scholar
19Wong-Ng, W., Paretzkin, B., and Fuller, E.R. Jr., J. Solid State Chem. 85, 117 (1990).CrossRefGoogle Scholar
20Ashby, M.F., Harper, J., and Lewis, J., TMS-AIME 245, 413 (1969).Google Scholar
21Burke, J.E., Kinetics of High-Temperature Process, edited by Kingery, W.D. (M.I.T. Press, Cambridge, MA, 1959), p. 109.Google Scholar
22Hare, T. M., Thomas, W.A., and Russell, R.L., in Ceramics Today—Tomorrow's Ceramics., op. cit., edited by Vincenzini, P., p. 1273.Google Scholar
23Hwang, N.H., Park, Y.K., Lee, H.K., Hahn, J.H., Bahng, G.W., Lee, K. W., Moon, H. G., and Park, J. C., J. Am. Ceram. Soc. 71, C–210 (1988).Google Scholar
24Pande, C. S., Acta Metall. 35, 2671 (1987).Google Scholar
25Atkinson, H. V., Acta Metall. 36, 469 (1988).CrossRefGoogle Scholar
26Russ, J. C., Practical Stereology (Plenum Press, New York, 1986).Google Scholar
27Hu, H. and Rath, B.B., Metall. Trans. 1, 3181 (1970).Google Scholar
28Verhoeven, J. D., Fundamentals of Physical Metallurgy (John Wiley & Sons, New York, 1975), Chap. 7.Google Scholar
29Kaiser, D. L., Holtzberg, F., Chisholm, M. F., and Worthington, T. K., J. Cryst. Growth 85, 593 (1987).CrossRefGoogle Scholar
30Rothman, S. J., Routbort, J. L., and Baker, J. E., Phys. Rev. B 40, 8852 (1989).Google Scholar
31Routbort, J.L., Rothman, S.J., Chen, N., Mundy, J.N., and Baker, J.E., Phys. Rev. B 43, 5489 (1991).Google Scholar
32Rothman, S.J., Routbort, J.L., Welp, U., and Baker, J.E., Phys. Rev. B 44, 2326 (1991).Google Scholar
33Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976), p. 499.Google Scholar
34Hartsell, M. L., Master Thesis, North Carolina State University, Raleigh, NC, 1991.Google Scholar
35Chatterjee, R., Prasanna, T. R., Moodera, J., and O'Handley, R. C., Physica C 158, 485 (1989).Google Scholar
36Beck, P.A., Kremer, J.C., Demer, L.J., and Holzworth, M.L., AIME Trans. 175, 372 (1948).Google Scholar
37Demer, L.J. and Beck, P.A., AIME Trans. 180, 147 (1949).Google Scholar