Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T05:05:59.307Z Has data issue: false hasContentIssue false

The grain refinement mechanism of electrodeposited copper

Published online by Cambridge University Press:  31 January 2011

Jianshe Lian*
Affiliation:
Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, People’s Republic of China
Qing Jiang
Affiliation:
Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: lianjs@jlu.edu.cn
Get access

Abstract

Microstructure features of five electrodeposited coppers with different grain sizes were systematically characterized by using transmission electron microscopy (TEM) observations and x-ray diffraction (XRD) analysis. Based on the experimental observations, two mechanisms for the grain refinement in electrodeposited copper were identified: (i) twin–twin intersection can directly create grains with large-angle boundaries as small as 10 nm and (ii) grains can also be refined via formation of dislocation cells, transformation of dislocation cell walls into sub-boundaries with small misorientations, and evolution of sub-boundaries into highly misoriented grain boundaries. Besides, dislocations are also effective to cut twin lamellas into pieces and make twin boundaries curved and round.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
2.Lu, L., Sui, M.L., and Lu, K.: Superplastic extensibility of nanocrystalline copper at room temperature. Science 287, 1463 (2000).CrossRefGoogle ScholarPubMed
3.Champion, Y., Langlois, C., S. Guérin-Mailly, Langlois, P., Bonnentien, J.L., and Hÿtch, M.J.: Near-perfect elastoplasticity in pure nanocrystalline copper. Science 300, 310 (2003).CrossRefGoogle ScholarPubMed
4.Rajagopalan, J., Han, J.H., and Saif, M.T.A.: Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films. Science 315, 1831 (2007).CrossRefGoogle ScholarPubMed
5.Youngdahl, C.J., Sanders, P.G., Eastman, J.A., and Weertman, J.R.: Compressive yield strengths of nanocrystalline Cu and Pd. Scr. Mater. 37, 809 (1997).CrossRefGoogle Scholar
6.Lu, K.: Synthesis of nanocrysalline materials from amorphous solids. Adv. Mater. 11, 1127 (1999).3.0.CO;2-L>CrossRefGoogle Scholar
7.Youssef, K.M., Scattergood, R.O., Murty, K.L., and Koch, C.C.: Ultratough nanocrystalline copper with a narrow grain size distribution. Appl. Phys. Lett. 85, 929 (2004).CrossRefGoogle Scholar
8.Cheng, S., Ma, E., Wang, Y.M., Kecskes, L.J., Youssef, K.M., Koch, C.C., Trociewitz, U.P., and Han, K.: Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater. 53, 1521 (2005).CrossRefGoogle Scholar
9.Mishra, A., Richard, V., F. Grégori, Asaro, R.J., and Meyers, M.A.: Microstructural evolution in copper processed by severe plastic deformation. Mater. Sci. Eng., A 410–411, 290 (2005).CrossRefGoogle Scholar
10.Pippan, R., Wetscher, F., Hafok, M., Vorhauer, A., and Sabirov, I.: The limits of refinement by severe plastic deformation. Adv. Eng. Mater. 8, 1046 (2006).CrossRefGoogle Scholar
11.Shin, D.H., Kim, I., Kim, J., and Park, K.T.: Grain refinement mechanism during equal-channel-angular pressing of a lowcarbon steel. Acta Mater. 49, 1285 (2001).CrossRefGoogle Scholar
12.Gholinia, A., Prangnell, P.B., and Markushev, M.V.: The effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE. Acta Mater. 48, 1115 (2000).CrossRefGoogle Scholar
13.Tao, N.R., Wang, Z.B., Tong, W.P., Sui, M.L., Lu, J., and Lu, K.: An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 50, 4603 (2002).CrossRefGoogle Scholar
14.Wang, K., Tao, N.R., Liu, G., Lu, J., and Lu, K.: Plastic straininduced grain refinement at the nanometer scale in copper. Acta Mater. 54, 5281 (2006).CrossRefGoogle Scholar
15.Zhang, H.W., Hei, Z.K., Liu, G., Lu, J., and Lu, K.: Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater. 51, 1871 (2003).CrossRefGoogle Scholar
16.Shen, X., Lian, J., Jiang, Z., and Jiang, Q.: High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grain size distribution. Mater. Sci. Eng., A 487, 410 (2008).CrossRefGoogle Scholar
17.Li, H. and Ebrahimi, F.: Ductile-to-brittle transition in nanocrystalline metals. Adv. Mater. 17, 1969 (2005).CrossRefGoogle Scholar
18.Zhang, H., Jiang, Z., Lian, J., and Jiang, Q.: Bulk nanostructured Cu with high strength and good ductility. Adv. Eng. Mater. 10, 41 (2008).CrossRefGoogle Scholar
19.Zhang, H., Jiang, Z., Lian, J., and Jiang, Q.: Strain rate dependence of tensile ductility in an electrodeposited Cu with ultrafine grain size. Mater. Sci. Eng., A 479, 136 (2008).CrossRefGoogle Scholar
20.Gu, C., Lian, J., Jiang, Q., and Jiang, Z.: Ductilep-brittle-ductile transition in an electrodeposited 13 nanometer grain sized Ni-8.6wt%Co alloy. Mater. Sci. Eng., A 459, 75 (2007).CrossRefGoogle Scholar
21.Shen, X., Lian, J., Jiang, Z., and Jiang, Q.: The optimal grain seized nanocrystalline Ni with high strength and good ductility fabricated by a direct current electrodeposition. Adv. Eng. Mater. 10, 539 (2008).CrossRefGoogle Scholar
22.Guduru, R.K., Murty, K.L., Youssef, K.M., Scattergood, R.O., and Koch, C.C.: Mechanical behavior of nanocrystalline copper. Mater. Sci. Eng., A 463, 14 (2007).CrossRefGoogle Scholar
23.Wang, G., Jiang, Z., Zhang, H., and Lian, J.: Enhanced tensile ductility in an electrodeposited nanocrystalline copper. J. Mater. Res. 23, 2238 (2008).CrossRefGoogle Scholar
24.Besser, P.R., Zschech, E., Blum, W., Winter, D., Ortega, R., Rose, S., Herrick, M., Gall, M., Thrasher, S., Tiner, M., Baker, B., Breachelmann, G., Zhao, L., Simpson, C., Capasso, C., Kawasaki, H., and Weitzman, E.: Microstructural characterization of inlaid copper interconnect lines. J. Electron. Mater. 30, 320 (2001).CrossRefGoogle Scholar
25.Harper, J.M.E., Cabral, C. Jr., Andicacos, P.C., Gignac, L., Noyan, I.C., Rodbell, K.P., and Hu, C.K.: Mechanisms for microstructure evolution in electroplated copper thin films near room temperature. J. Appl. Phys. 86, 2516 (1999).CrossRefGoogle Scholar
26.Jiang, Q-T., Nowell, M., Foran, B., Frank, A., Havemann, R.H., Parihar, V., Augur, R.A., and Luttmer, J.D.: Analysis of copper grains in damascene trenches after rapid thermal processing or furnace anneals. J. Electron. Mater. 31, 10 (2002).CrossRefGoogle Scholar
27.Xu, D., Sriram, V., Ozolins, V., Yang, J-M., Tu, K.N., Stafford, G.R., Beauchamp, C., Zienert, I., Geisler, H., Hofmann, P., and Zschech, E.: Nanotwin formation and its physical properties and effect on reliability of copper interconnects. Microelectron. Eng. 85, 2155 (2008).CrossRefGoogle Scholar
28.Wang, Y.M., Cheng, S., Wei, Q.M., Ma, E., Nieh, T.G., and Hamza, A.: Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni. Scr. Mater. 51, 1023 (2004).CrossRefGoogle Scholar
29.Lu, L., Shen, Y., Chen, X., Qian, L., and Lu, K.: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004).CrossRefGoogle ScholarPubMed
30.Shen, Y., Lu, L., Lu, Q., Jin, Z., and Lu, K.: Tensile properties of copper with nano-scale twins. Scr. Mater. 52, 989 (2005).CrossRefGoogle Scholar
31.Shen, Y., Lu, L., Dao, M., and Suresh, S.: Strain rate sensitivity of Cu with nanoscale twins. Scr. Mater. 55, 319 (2006).CrossRefGoogle Scholar
32.Ma, E., Wang, Y.M., Lu, Q.H., Sui, M.L., Lu, L., and Lu, K.: Strain hardening and large tensile elongation in ultrahigh-strength nanotwinned copper. Appl. Phys. Lett. 85, 4932 (2004).CrossRefGoogle Scholar
33.Lu, L., Schwaiger, R., Shan, Z.W., Dao, M., Lu, K., and Suresh, S.: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169 (2005).CrossRefGoogle Scholar
34.Fan, G.J., Fu, L.F., Wang, Y.D., Ren, Y., Choo, H., Liaw, P.K., Wang, G.Y., and Browning, N.D.: Uniaxial tensile plastic deformation of a bulk nanocrystalline alloy studied by a high-energy x-ray diffraction technique. Appl. Phys. Lett. 89, 101918 (2006).CrossRefGoogle Scholar
35.Budrovic, Z., Swygenhoven, H.V., Derlet, P.M., Petegem, S.V., and Schmitt, B.: Plastic deformation with reversible peak broadening in nanocrystalline nickel. Science 304, 273 (2004).CrossRefGoogle ScholarPubMed
36.Zhao, W.S., Tao, N.R., Guo, J.Y., Lu, Q.H., and Lu, K.: High density nano-scale twins in Cu induced by dynamic plastic deformation. Scr. Mater. 53, 745 (2005).CrossRefGoogle Scholar
37.IIIGray, G.T., Follansbee, P.S., and Frantz, C.E.: Effect of residual strain on the substructure development and mechanical response of shock-loaded copper. Mater. Sci. Eng., A 111, 9 (1989).CrossRefGoogle Scholar