Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T01:03:29.125Z Has data issue: false hasContentIssue false

Gram scale synthesis of Fe/FexOy core–shell nanoparticles and their incorporation into matrix-free superparamagnetic nanocomposites

Published online by Cambridge University Press:  15 May 2018

John Watt*
Affiliation:
Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Grant C. Bleier
Affiliation:
Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Zachary W. Romero
Affiliation:
Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Bradley G. Hance
Affiliation:
Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Jessica A. Bierner
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Todd C. Monson
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Dale L. Huber
Affiliation:
Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
*
a)Address all correspondence to this author. e-mail: jdwatt@sandia.gov
Get access

Abstract

Significant reductions recently seen in the size of wide-bandgap power electronics have not been accompanied by a relative decrease in the size of the corresponding magnetic components. To achieve this, a new generation of materials with high magnetic saturation and permeability are needed. Here, we develop gram-scale syntheses of superparamagnetic Fe/FexOy core–shell nanoparticles and incorporate them as the magnetic component in a strongly magnetic nanocomposite. Nanocomposites are typically formed by the organization of nanoparticles within a polymeric matrix. However, this approach can lead to high organic fractions and phase separation; reducing the performance of the resulting material. Here, we form aminated nanoparticles that are then cross-linked using epoxy chemistry. The result is a magnetic nanoparticle component that is covalently linked and well separated. By using this ‘matrix-free’ approach, we can substantially increase the magnetic nanoparticle fraction, while still maintaining good separation, leading to a superparamagnetic nanocomposite with strong magnetic properties.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hurley, W.G. and Wolfle, W.H.: Transformers and Inductors for Power Electronics: Theory, Design and Applications, 1st ed. (John Wiley & Sons Ltd., West Sussex, U.K., 2013).CrossRefGoogle Scholar
Beatrice, C., Dobak, S., Ferrara, E., Fiorillo, F., Ragusa, C., Fuzer, J., and Kollar, P.: Broadband magnetic losses of nanocrystalline ribbons and powder cores. J. Magn. Magn. Mater. 420, 317323 (2016).CrossRefGoogle Scholar
Mandel, K., Hutter, F., Gellermann, C., and Sextl, G.: Modified superparamagnetic nanocomposite microparticles for highly selective Hg(II) or Cu(II) separation and recovery from aqueous solutions. ACS Appl. Mater. Interfaces 4, 56335642 (2012).CrossRefGoogle ScholarPubMed
Dong, W., Li, Y., Niu, D., Ma, Z., Gu, J., Chen, Y., Zhao, W., Liu, X., Liu, C., and Shi, J.: Facile synthesis of monodisperse superparamagnetic Fe3O4 core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv. Mater. 23, 53925397 (2011).CrossRefGoogle ScholarPubMed
Gu, W.L., Deng, X., Gu, X.X., Jia, X.F., Lou, B.H., Zhang, X.W., Li, J., and Wang, E.K.: Stabilized, superparamagnetic functionalized graphene/Fe3O4@Au nanocomposites for a magnetically-controlled solid-state electrochemiluminescence biosensing application. Anal. Chem. 87, 18761881 (2015).CrossRefGoogle ScholarPubMed
Zhu, L.J., Wang, D.L., Wei, X., Zhu, X.Y., Li, J.Q., Tu, C.L., Su, Y., Wu, J.L., Zhu, B.S., and Yan, D.Y.: Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. J. Controlled Release 169, 228238 (2013).CrossRefGoogle ScholarPubMed
Cullity, B.: Introduction to Magnetic Materials (Addison-Wesley Pub. Co., Reading, MA, 1972).Google Scholar
Huber, D.L.: Synthesis, properties, and applications of iron nanoparticles. Small 1, 482501 (2005).CrossRefGoogle ScholarPubMed
Knobel, M., Nunes, W.C., Socolovsky, L.M., De Biasi, E., Vargas, J.M., and Denardin, J.C.: Superparamagnetism and other magnetic features in granular materials: A review on ideal and real systems. J. Nanosci. Nanotechnol. 8, 28362857 (2008).CrossRefGoogle ScholarPubMed
Pyun, J.: Nanocomposite materials from functional polymers and magnetic colloids. Polym. Rev. 47, 231263 (2007).CrossRefGoogle Scholar
Stone, R., Hipp, S., Barden, J., Brown, P.J., and Mefford, O.T.: Highly scalable nanoparticle–polymer composite fiber via wet spinning. J. Appl. Polym. Sci. 130, 19751980 (2013).CrossRefGoogle Scholar
Wakayama, H. and Yonekura, H.: Synthesis and magnetic properties of FePt nanocomposite magnets via self-assembled block copolymer templates. Mater. Lett. 171, 268272 (2016).CrossRefGoogle Scholar
Behrens, S. and Appel, I.: Magnetic nanocomposites. Curr. Opin. Biotechnol. 39, 8996 (2016).CrossRefGoogle ScholarPubMed
Chen, S., Zhang, S., Jin, T., and Zhao, G.: Synthesis and characterization of novel covalently linked waterborne polyurethane/Fe3O4 nanocomposite films with superior magnetic, conductive properties and high latex storage stability. Chem. Eng. J. 286, 249258 (2016).CrossRefGoogle Scholar
de Leon, A.C., Chen, Q., Palaganas, N.B., Palaganas, J.O., Manapat, J., and Advincula, R.C.: High performance polymer nanocomposites for additive manufacturing applications. React. Funct. Polym. 103, 141155 (2016).CrossRefGoogle Scholar
Hooper, J.B. and Schweizer, K.S.: Theory of phase separation in polymer nanocomposites. Macromolecules 39, 51335142 (2006).CrossRefGoogle Scholar
Mochalin, V.N., Neitzel, I., Etzold, B.J.M., Peterson, A., Palmese, G., and Gogotsi, Y.: Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano 5, 74947502 (2011).CrossRefGoogle ScholarPubMed
Dach, B.I., Rengifo, H.R., Turro, N.J., and Koberstein, J.T.: Cross-linked “matrix-free” nanocomposites from reactive polymer-silica hybrid nanoparticles. Macromolecules 43, 65496552 (2010).CrossRefGoogle Scholar
Compton, B.G. and Lewis, J.A.: 3D-printing of lightweight cellular composites. Adv. Mater. 26, 59305935 (2014).CrossRefGoogle ScholarPubMed
Jin, F.L., Li, X., and Park, S.J.: Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 29, 111 (2015).CrossRefGoogle Scholar
Sugawa, Y., Ishidate, K., Sonehara, M., and Sato, T.: Carbonyl-iron/epoxy composite magnetic core for planar power inductor used in package-level power grid. IEEE Trans. Magn. 49, 41724175 (2013).CrossRefGoogle Scholar
Gu, H., Tadakamalla, S., Huang, Y., Colorado, H.A., Luo, Z., Haldolaarachchige, N., Young, D.P., Wei, S., and Guo, Z.: Polyaniline stabilized magnetite nanoparticle reinforced epoxy nanocomposites. ACS Appl. Mater. Interfaces 4, 56135624 (2012).CrossRefGoogle ScholarPubMed
Zhu, J.H., Wei, S.Y., Ryu, J., Sun, L.Y., Luo, Z.P., and Guo, Z.H.: Magnetic epoxy resin nanocomposites reinforced with core–shell structured Fe@FeO nanoparticles: Fabrication and property analysis. ACS Appl. Mater. Interfaces 2, 21002107 (2010).CrossRefGoogle Scholar
Pour, Z.S. and Ghaemy, M.: Thermo-mechanical behaviors of epoxy resins reinforced with silane-epoxide functionalized α-Fe2O3 nanoparticles. Prog. Org. Coat. 77, 13161324 (2014).CrossRefGoogle Scholar
Naughton, B.T., Majewski, P., and Clarke, D.R.: Magnetic properties of nickel–zinc ferrite toroids prepared from nanoparticles. J. Am. Ceram. Soc. 90, 35473553 (2007).CrossRefGoogle Scholar
Mikuszeit, N., Vedmedenko, E.Y., and Oepen, H.P.: Multipole interaction of polarized single-domain particles. J. Phys. Condens. Matter 16, 90379045 (2004).CrossRefGoogle Scholar
Bleier, G.C., Watt, J., Simocko, C.K., Lavin, J.M., and Huber, D.L.: Reversible magnetic agglomeration—A mechanism for true thermodynamic control over nanoparticle size. Angew. Chem. Int. Ed. Engl. (2018) DOI: 10.1002/anie.201800959.CrossRefGoogle Scholar
Fellows, B.D., Sandler, S., Livingston, J., Fuller, K., Nwandu, L., Timmins, S., Lantz, K.A., Stefik, M., and Mefford, O.T.: Extended LaMer synthesis of cobalt-doped ferrite. IEEE Magn. Lett. 9, 15 (2018).CrossRefGoogle Scholar
Vreeland, E.C., Watt, J., Schober, G.B., Hance, B.G., Austin, M.J., Price, A.D., Fellows, B.D., Monson, T.C., Hudak, N.S., Maldonado-Camargo, L., Bohorquez, A.C., Rinaldi, C., and Huber, D.L.: Enhanced nanoparticle size control by extending LaMer’s mechanism. Chem. Mater. 27, 60596066 (2015).CrossRefGoogle Scholar
Unni, M., Uhl, A.M., Savliwala, S., Savitzky, B.H., Dhavalikar, R., Garraud, N., Arnold, D.P., Kourkoutis, L.F., Andrew, J.S., and Rinaldi, C.: Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano 11, 22842303 (2017).CrossRefGoogle ScholarPubMed
Monson, T.C., Ma, Q., Stevens, T.E., Lavin, J.M., Leger, J.L., Klimov, P.V., and Huber, D.L.: Implication of ligand choice on surface properties, crystal structure, and magnetic properties of iron nanoparticles. Part. Part. Syst. Char. 30, 258265 (2013).CrossRefGoogle Scholar
Concas, G., Congiu, F., Muscas, G., and Peddis, D.: Determination of blocking temperature in magnetization and mössbauer time scale: A functional form approach. J. Phys. Chem. C 121, 1654116548 (2017).CrossRefGoogle Scholar
Watt, J., Bleier, G.C., Austin, M.J., Ivanov, S.A., and Huber, D.L.: Non-volatile iron carbonyls as versatile precursors for the synthesis of iron-containing nanoparticles. Nanoscale 9, 66326637 (2017).CrossRefGoogle ScholarPubMed
Yun, H., Kim, J., Paik, T., Meng, L.Y., Jo, P.S., Kikkawa, J.M., Kagan, C.R., Allen, M.G., and Murray, C.B.: Alternate current magnetic property characterization of nonstoichiometric zinc ferrite nanocrystals for inductor fabrication via a solution based process. J. Appl. Phys. 119 (2016).CrossRefGoogle Scholar
Park, J., Joo, J., Kwon, S.G., Jang, Y., and Hyeon, T.: Synthesis of monodisperse spherical nanocrystals. Angew. Chem., Int. Ed. Engl. 46, 46304660 (2007).CrossRefGoogle ScholarPubMed
Schonecker, S., Li, X., Johansson, B., Kwon, S.K., and Vitos, L.: Thermal surface free energy and stress of iron. Sci. Rep. 5, 14860 (2015).CrossRefGoogle Scholar
Grochola, G., Russo, S.P., Yarovsky, I., and Snook, I.K.: “Exact” surface free energies of iron surfaces using a modified embedded atom method potential and lambda integration. J. Chem. Phys. 120, 34253430 (2004).CrossRefGoogle ScholarPubMed
Tripp, G.K., Good, K.L., Motta, M.J., Kass, P.H., and Murphy, C.J.: The effect of needle gauge, needle type, and needle orientation on the volume of a drop. Vet. Ophthalmol. 19, 3842 (2016).CrossRefGoogle ScholarPubMed
Li, T., Senesi, A.J., and Lee, B.: Small angle X-ray scattering for nanoparticle research. Chem. Rev. 116, 1112811180 (2016).CrossRefGoogle ScholarPubMed
Xu, Y., Qin, Y., Palchoudhury, S., and Bao, Y.: Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27, 89908997 (2011).CrossRefGoogle ScholarPubMed
Nakamura, H. and Tamura, Z.: Fluorometric determination of secondary amines based on their reaction with fluorescamine. Anal. Chem. 52, 20872092 (1980).CrossRefGoogle Scholar
Eastwood, D., Fernandez, C., Yoon, B.Y., Sheaff, C.N., and Wai, C.M.: Fluorescence of aromatic amines and their fluorescamine derivatives for detection of explosive vapors. Appl. Spectrosc. 60, 958963 (2006).CrossRefGoogle ScholarPubMed
Gore, M.G.: Spectrophotometry and Spectrofluorimetry: A Practical Approach, 2nd ed. (Oxford University Press, New York, NY, 2000).Google Scholar
Puig, J., Hoppe, C.E., Fasce, L.A., Perez, C.J., Pineiro-Redondo, Y., Banobre-Lopez, M., Lopez-Quintela, M.A., Rivas, J., and Williams, R.J.J.: Superparamagnetic nanocomposites based on the dispersion of oleic acid-stabilized magnetite nanoparticles in a diglycidylether of bisphenol a-based epoxy matrix: Magnetic hyperthermia and shape memory. J. Phys. Chem. C 116, 1342113428 (2012).CrossRefGoogle Scholar
Kessler, M.: Advanced Topics in Characterization of Composites, 1st ed. (Trafford Publishing, Bloomington, IN, 2004).Google Scholar
Gao, X., Shen, J., Hsia, Y., and Chen, Y.: Reduction of supported iron oxide studied by temperature-programmed reduction combined with mossbauer spectroscopy and X-ray diffraction. J. Chem. Soc., Faraday Trans. 89, 10791084 (1993).CrossRefGoogle Scholar
Bolm, C., Legros, J., Le Paih, J., and Zani, L.: Iron-catalyzed reactions in organic synthesis. Chem. Rev. 104, 62176254 (2004).CrossRefGoogle ScholarPubMed
Kin, M., Kura, H., and Ogawa, T.: Core loss and magnetic susceptibility of superparamagnetic Fe nanoparticle assembly. AIP Adv. 6, 125013 (2016).CrossRefGoogle Scholar
Supplementary material: File

Watt et al. supplementary material

Figures S1-S4

Download Watt et al. supplementary material(File)
File 1 MB