Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T13:39:14.896Z Has data issue: false hasContentIssue false

Graphene nanoelectrodes for biomolecular sensing

Published online by Cambridge University Press:  24 July 2017

Pawel Puczkarski
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
Jacob L. Swett
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
Jan A. Mol*
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
*
a) Address all correspondence to this author. e-mail: jan.mol@materials.ox.ac.uk
Get access

Abstract

Nanoscale biosensor technology has attracted considerable attention with its promise of revolutionizing techniques ranging from biological interfaces to rapid pathogen detection to enabling DNA data storage. Many approaches, such as nanopore sequencing, have been explored and are already achieving tremendous success; however, new sensing modalities and architectures are emerging that are envisioned for the next generation of ever more capable biosensors. These novel devices, combined with advances in machine learning, are moving concepts from simulation to experimentation and demonstration. In recent years, rapid advances have been made and many architectures have been put forward for novel approaches to biomolecular sensing using nanoelectronics, including the advent of tunnel junctions as a sensing platform. With high accuracy, sensitivity, and affordability, these sensors are predicted to drive a shift to personalized medicine and rapid diagnostics in real-time anywhere in the world. Here we give an overview of tunneling sequencing and its application in biomolecular sensing and provide a perspective on the use of scalable tunneling sequencing methods utilizing graphene as the active component.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors contributed equally to this work.

Contributing Editor: Venkatesan Renugopalakrishnan

References

REFERENCES

Kasianowicz, J.J., Brandin, E., Branton, D., and Deamer, D.W.: Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U. S. A. 93(24), 13770 (1996).Google Scholar
Clarke, J., Wu, H-C., Jayasinghe, L., Patel, A., Reid, S., and Bayley, H.: Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4(4), 265 (2009).CrossRefGoogle ScholarPubMed
Branton, D., Deamer, D.W., Marziali, A., Bayley, H., Benner, S.A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X., Jovanovich, S.B., Krstic, P.S., Lindsay, S., Ling, X.S., Mastrangelo, C.H., Meller, A., Oliver, J.S., Pershin, Y.V., Ramsey, J.M., Riehn, R., Soni, G.V., Tabard-Cossa, V., Wanunu, M., Wiggin, M., and Schloss, J.A.: The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26(10), 1146 (2008).CrossRefGoogle ScholarPubMed
Garaj, S., Liu, S., Golovchenko, J.A., and Branton, D.: Molecule-hugging graphene nanopores. Proc. Natl. Acad. Sci. U. S. A. 110(30), 12192 (2013).Google Scholar
Lindsay, S.: The promises and challenges of solid-state sequencing. Nat. Nanotechnol. 11(2), 109 (2016).Google Scholar
Arjmandi-Tash, H., Belyaeva, L.A., and Schneider, F.: Single molecule detection with graphene and other two-dimensional materials: Nanopores and beyond. Chem. Soc. Rev. 45, 476 (2016).Google Scholar
Li, J., Zhang, Y., Yang, J., Bi, K., Ni, Z., Li, D., and Chen, Y.: Molecular dynamics study of DNA translocation through graphene nanopores. Phys. Rev. E 87(6), 62707 (2013).Google Scholar
Di Ventra, M. and Taniguchi, M.: Decoding DNA, RNA and peptides with quantum tunnelling. Nat. Nanotechnol. 11(2), 117 (2016).Google Scholar
Tanaka, H.: Scanning tunneling microscopy imaging and manipulation of DNA oligomer adsorbed on Cu(111) surfaces by a pulse injection method. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 15(3), 602 (1997).Google Scholar
Tanaka, H., Hamai, C., Kanno, T., and Kawai, T.: High-resolution scanning tunneling microscopy imaging of DNA molecules on Cu(111) surfaces. Surf. Sci. 432(3), 611 (1999).CrossRefGoogle Scholar
Shapir, E., Cohen, H., Calzolari, A., Cavazzoni, C., Ryndyk, D.A., Cuniberti, G., Kotlyar, A., Di Felice, R., and Porath, D.: Electronic structure of single DNA molecules resolved by transverse scanning tunnelling spectroscopy. Nat. Mater. 7(1), 68 (2008).CrossRefGoogle ScholarPubMed
Tanaka, H. and Kawai, T.: Partial sequencing of a single DNA molecule with a scanning tunnelling microscope. Nat. Nanotechnol. 4(8), 518 (2009).Google Scholar
Huang, S., He, J., Chang, S., Zhang, P., Liang, F., Li, S., Tuchband, M., Fuhrmann, A., Ros, R., and Lindsay, S.: Identifying single bases in a DNA oligomer with electron tunnelling. Nat. Nanotechnol. 5(12), 868 (2010).Google Scholar
Zwolak, M. and Di Ventra, M.: Electronic signature of DNA nucleotides via transverse transport. Nano Lett. 5(3), 421 (2005).Google Scholar
Agah, S., Zheng, M., Pasquali, M., and Kolomeisky, A.B.: DNA sequencing by nanopores: Advances and challenges. J. Phys. D: Appl. Phys. 49 (2016).CrossRefGoogle Scholar
Fischbein, M.D. and Drndic, M.: Sub-10 nm device fabrication in a transmission electron microscope. Nano Lett. 7(5), 1329 (2007).CrossRefGoogle Scholar
Maleki, T., Mohammadi, S., and Ziaie, B.: A nanofluidic channel with embedded transverse nanoelectrodes. Nanotechnology 20, 105302 (2009).CrossRefGoogle ScholarPubMed
Liang, X. and Chou, S.Y.: Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis. Nano Lett. 8(5), 1472 (2008).CrossRefGoogle ScholarPubMed
Tsutsui, M., Taniguchi, M., Yokota, K., and Kawai, T.: Identifying single nucleotides by tunnelling current. Nat. Nanotechnol. 5(4), 286 (2010).Google Scholar
Tsutsui, M., Rahong, S., Iizumi, Y., Okazaki, T., Taniguchi, M., and Kawai, T.: Single-molecule sensing electrode embedded in-plane nanopore. Sci. Rep. 1, 46 (2011). doi: 10.1038/srep00046 Google Scholar
Ivanov, A.P., Instuli, E., McGilvery, C.M., Baldwin, G., McComb, D.W., Albrecht, T., and Edel, J.B.: DNA tunneling detector embedded in a nanopore. Nano Lett. 11(1), 279 (2011).Google Scholar
Arima, A., Tsutsui, M., Morikawa, T., Yokota, K., and Taniguchi, M.: Fabrications of insulator-protected nanometer-sized electrode gaps. J. Appl. Phys. 115(11), 114310 (2014).Google Scholar
Morikawa, T., Yokota, K., Tsutsui, M., and Taniguchi, M.: Fast and low-noise tunnelling current measurements for single-molecule detection in electrolyte solution using insulator-protected nanoelectrodes. Nanoscale 9, 4076 (2017).Google Scholar
Muthusubramanian, N., Galan, E., Maity, C., Eelkema, R., Grozema, F.C., and Van Der Zant, H.S.J.: Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments. Appl. Phys. Lett. 109(1), 13102 (2016).Google Scholar
Spinney, P.S., Collins, S.D., Howitt, D.G., and Smith, R.L.: Fabrication and characterization of a solid-state nanopore with self-aligned carbon nanoelectrodes for molecular detection. Nanotechnology 23(13), 135501 (2012).Google Scholar
Ivanov, A.P., Freedman, K.J., Kim, M.J., Albrecht, T., and Edel, J.B.: High precision fabrication and positioning of nanoelectrodes in a nanopore. ACS Nano 8(2), 1940 (2014).Google Scholar
Geim, A.K.: Graphene: Status and prospects. Science 324, 1530 (2009).Google Scholar
Mohanty, N. and Berry, V.: Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8(12), 4469 (2008).Google Scholar
Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D., and Golovchenko, J.A.: Graphene as a subnanometre trans-electrode membrane. Nature 467(7312), 190 (2010).Google Scholar
Yang, Y., Yang, X., Zou, X., Wu, S., Wan, D., Cao, A., Liao, L., Yuan, Q., and Duan, X.: Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv. Funct. Mater. 27, 1604096 (2016).Google Scholar
Li, X., Magnuson, C.W., Venugopal, A., An, J., Suk, J.W., Han, B., Borysiak, M., Cai, W., Velamakanni, A., Zhu, Y., Fu, L., Vogel, E.M., Voelkl, E., Colombo, L., and Ruoff, R.S.: Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 10(11), 4328 (2010).Google Scholar
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y-J., Kim, K.S., Özyilmaz, B., Ahn, J-H., Hong, B.H., and Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574 (2010).Google Scholar
Dong, X., Shi, Y., Huang, W., Chen, P., and Li, L.J.: Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22(14), 1649 (2010).Google Scholar
Ohno, Y., Maehashi, K., and Matsumoto, K.: Chemical and biological sensing applications based on graphene field-effect transistors. Biosens. Bioelectron. 26(4), 1727 (2010).Google Scholar
Malec, C.E. and Davidović, D.: Transport in graphene tunnel junctions. J. Appl. Phys. 109(6), 064507 (2011).Google Scholar
Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., Mullen, K., and Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466(7305), 470 (2010).CrossRefGoogle ScholarPubMed
Sokolov, A.N., Yap, F.L., Liu, N., Kim, K., Ci, L., Johnson, O.B., Wang, H., Vosgueritchian, M., Koh, A.L., Chen, J., Park, J., and Bao, Z.: Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition. Nat. Commun. 4, 1 (2013).CrossRefGoogle ScholarPubMed
Choi, D., Kuru, C., Choi, C., Noh, K., Hong, S-K., Das, S., Choi, W., and Jin, S.: Nanopatterned graphene field effect transistor fabricated using block Co-polymer lithography. Mater. Res. Lett. 2(3), 131139 (2014).Google Scholar
Li, X., Wang, X., Zhang, L., Lee, S., and Dai, H.: Chemically derived ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229 (2008).CrossRefGoogle ScholarPubMed
Boukhvalov, D.W. and Katsnelson, M.I.: Chemical functionalization of graphene. Molecules 21, 344205 (2009).Google Scholar
Huang, B., Yan, Q., Zhou, G., Wu, J., Gu, B.L., Duan, W., and Liu, F.: Making a field effect transistor on a single graphene nanoribbon by selective doping. Appl. Phys. Lett. 91(25), 1 (2007).Google Scholar
Cao, Y., Dong, S., Liu, S., He, L., Gan, L., Yu, X., Steigerwald, M.L., Wu, X., Liu, Z., and Guo, X.: Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem., Int. Ed. 51(49), 12228 (2012).CrossRefGoogle ScholarPubMed
Zhou, Y., Maguire, P., Jadwiszczak, J., Muruganathan, M., Mizuta, H., and Zhang, H.: Precise milling of nano-gap chains in graphene with a focused helium ion beam. Nanotechnology 27(32), 325302 (2016).Google Scholar
Song, B., Schneider, G.F., Xu, Q., Pandraud, G., Dekker, C., and Zandbergen, H.: Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett. 11(6), 2247 (2011).CrossRefGoogle ScholarPubMed
Zhang, K., Fu, Q., Pan, N., Yu, X., Liu, J., Luo, Y., Wang, X., Yang, J., and Hou, J.: Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography. Nat. Commun. 3, 1194 (2012).Google Scholar
Prins, F., Barreiro, A., Ruitenberg, J.W., Seldenthuis, J.S., Aliaga-Alcalde, N., Vandersypen, L.M.K., and Van Der Zant, H.S.J.: Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 11(11), 4607 (2011).Google Scholar
Moser, J. and Bachtold, A.: Fabrication of large addition energy quantum dots in graphene. Appl. Phys. Lett. 95(17), 58 (2009).Google Scholar
Lau, C.S., Mol, J.A., Warner, J.H., and Briggs, G.A.D.: Nanoscale control of graphene electrodes. Phys. Chem. Chem. Phys. 16(38), 20398 (2014).Google Scholar
Nef, C., Posa, L., Makk, P., Fu, W., Halbritter, A., Schonenberger, C., and Calame, M.: High-yield fabrication of nm-size gaps in monolayer CVD graphene. Nanoscale 6(6), 7249 (2014).Google Scholar
Lumetti, S., Candini, A., Godfrin, C., Balestro, F., Wernsdorfer, W., Klyatskaya, S., Ruben, M., and Affronte, M.: Single-molecule devices with graphene electrodes. Dalton Trans. 45(42), 16570 (2016).Google Scholar
Puczkarski, P., Gehring, P., Lau, C.S., Liu, J., Ardavan, A., Warner, J.H., Briggs, G.A.D., and Mol, J.A.: Three-terminal graphene single-electron transistor fabricated using feedback-controlled electroburning. Appl. Phys. Lett. 107(13), 133105 (2015).Google Scholar
Husale, B.S., Sahoo, S., Radenovic, A., Traversi, F., Annibale, P., and Kis, A.: SsDNA binding reveals the atomic structure of graphene. Langmuir 26(23), 18078 (2010).CrossRefGoogle ScholarPubMed
Goyal, G., Lee, Y.B., Darvish, A., Ahn, C.W., and Kim, M.J.: Hydrophilic and size-controlled graphene nanopores for protein detection. Nanotechnology 27, 1 (2016).Google Scholar
Traversi, F., Raillon, C., Benameur, S.M., Liu, K., Khlybov, S., Tosun, M., Krasnozhon, D., Kis, A., and Radenovic, A.: Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat. Nanotechnol. 8(12), 939 (2013).CrossRefGoogle ScholarPubMed
Girdhar, A., Sathe, C., Schulten, K., and Leburton, J-P.: Graphene quantum point contact transistor for DNA sensing. Proc. Natl. Acad. Sci. U. S. A. 110(42), 16748 (2013).Google Scholar
Balan, A., Drndi, M., Puster, M., and Rodrı, J.A.: Toward sensitive graphene by preventing electron beam-induced nanoribbon-nanopore damage. ACS Nano 7(12), 11283 (2013).Google Scholar
Sadeghi, H., Algaragholy, L., Pope, T., Bailey, S., Visontai, D., Manrique, D., Ferrer, J., Garcia-Suarez, V., Sangtarash, S., and Lambert, C.J.: Graphene sculpturene nanopores for DNA nucleobase sensing. J. Phys. Chem. B 118(24), 6908 (2014).CrossRefGoogle ScholarPubMed
Prasongkit, J., Feliciano, G.T., Rocha, A.R., He, Y., Osotchan, T., Ahuja, R., and Scheicher, R.H.: Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene. Sci. Rep. 5, 17560 (2015).Google Scholar
Paulechka, E., Wassenaar, T.A., Kroenlein, K., Kazakov, A., and Smolyanitsky, A.: Nucleobase-functionalized graphene nanoribbons for accurate high-speed DNA sequencing. Nanoscale 8(4), 1861 (2016).Google Scholar
Le, D., Kara, A., Schröder, E., Hyldgaard, P., and Rahman, T.S.: Physisorption of nucleobases on graphene: A comparative van der Waals study. J. Phys.: Condens. Matter 24, 424210 (2012).Google Scholar
Min, S.K., Kim, W.Y., Cho, Y., and Kim, K.S.: Fast DNA sequencing with a graphene-based nanochannel device. Nat. Nanotechnol. 6(3), 162 (2011).Google Scholar
Postma, H.W.C.: Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 10(2), 420 (2010).Google Scholar
Island, J.O., Holovchenko, A., Koole, M., Alkemade, P.F.A., Menelaou, M., Aliaga-Alcalde, N., Burzurí, E., and van der Zant, H.S.J.: Fabrication of hybrid molecular devices using multi-layer graphene break junctions. J. Phys.: Condens. Matter 26(47), 474205 (2014).Google Scholar
Barreiro, A., Van Der Zant, H.S.J., Vandersypen, L.M.K., and van der Zant, H.S.J.: Quantum dots at room temperature carved out from few-layer graphene. Nano Lett. 12(12), 6096 (2012).Google Scholar
Shendure, J. and Ji, H.: Next-generation DNA sequencing. Nat. Biotechnol. 26(10), 1135 (2008).CrossRefGoogle ScholarPubMed
Editorial: Building a better nanopore. Nat. Nanotechnol. 11(2), 105 (2016).Google Scholar
Xu, Q., Wu, M.Y., Schneider, G.F., Houben, L., Malladi, S.K., Dekker, C., Yucelen, E., Dunin-Borkowski, R.E., and Zandbergen, H.W.: Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature. ACS Nano 7(2), 1566 (2013).CrossRefGoogle ScholarPubMed
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).Google Scholar
Sint, K., Wang, B.Y., and Kral, P.: Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 130(49), 16448 (2008).Google Scholar
Prasongkit, J., Grigoriev, A., Pathak, B., Ahuja, R., and Scheicher, R.H.: Theoretical study of electronic transport through DNA nucleotides in a double-functionalized graphene nanogap. J. Phys. Chem. C 117(29), 15421 (2013).CrossRefGoogle Scholar
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Kong, J., Kim, K.S.K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Ahn, J-H., Kim, P., Choi, J-Y., and Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nano Lett. 9(1), 30 (2009).Google Scholar
Schneider, G.F., Xu, Q., Hage, S., Luik, S., Spoor, J.N.H., Malladi, S., Zandbergen, H., and Dekker, C.: Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation. Nat. Commun. 4, 2619 (2013).Google Scholar
Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., and Kim, K.S.: Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156 (2012).CrossRefGoogle ScholarPubMed
Im, J., Biswas, S., Liu, H., Zhao, Y., Sen, S., Biswas, S., Ashcroft, B., Borges, C., Wang, X., Lindsay, S., and Zhang, P.: Electronic single-molecule identification of carbohydrate isomers by recognition tunnelling. Nat. Commun. 7, 13868 (2016).Google Scholar
Cohen-Tanugi, D. and Grossman, J.C.: Water desalination across nanoporous graphene. Nano Lett. 12(7), 3602 (2012).Google Scholar
Lee, J., Yang, Z., Zhou, W., Pennycook, S.J., Pantelides, S.T., and Chisholm, M.F.: Stabilization of graphene nanopore. Proc. Natl. Acad. Sci. U. S. A. 111(21), 7522 (2014).Google Scholar
He, J., Lin, L., Zhang, P., and Lindsay, S.: Identification of DNA basepairing via tunnel-current decay. Nano Lett. 7(12), 3854 (2007).CrossRefGoogle ScholarPubMed
Chang, S., Sen, S., Zhang, P., Gyarfas, B., Ashcroft, B., Lefkowitz, S., Peng, H., and Lindsay, S.: Palladium electrodes for molecular tunnel junctions. Nanotechnology 23(42), 425202 (2012).Google Scholar
Lindsay, S.: Biochemistry and semiconductor electronics—The next big hit for silicon? J. Phys.: Condens. Matter 24(16), 164201 (2012).Google Scholar
Chang, S., Huang, S., He, J., Liang, F., Zhang, P., Li, S., Chen, X., Sankey, O., and Lindsay, S.: Electronic signatures of all four DNA nucleosides in a tunneling gap. Nano Lett. 10(3), 1070 (2010).Google Scholar
Pedersen, J.N., Boynton, P., Di Ventra, M., Jauho, A-P., and Flyvbjerg, H.: Classification of DNA nucleotides with transverse tunneling currents. Nanotechnology 28, 015502 (2016).Google Scholar
Krishnakumar, P., Gyarfas, B., Song, W., Sen, S., Zhang, P., Krstić, P., and Lindsay, S.: Slowing DNA translocation through a nanopore using a functionalized electrode. ACS Nano 7(11), 10319 (2013).Google Scholar
Lindsay, S., He, J., Sankey, O., Hapala, P., Jelinek, P., Zhang, P., Chang, S., and Huang, S.: Recognition tunneling. Nanotechnology 21, 262001 (2010).CrossRefGoogle ScholarPubMed
Biswas, S., Sen, S., Im, J., Biswas, S., Krstic, P., Ashcroft, B., Borges, C., Zhao, Y., Lindsay, S., and Zhang, P.: Universal readers based on hydrogen bonding or π–π stacking for identification of DNA nucleotides in electron tunnel junctions. ACS Nano 10(12), 11304 (2016).Google Scholar
Chang, S., He, J., Kibel, A., Lee, M., Sankey, O., Zhang, P., and Lindsay, S.: Tunnelling readout of hydrogen-bonding-based recognition. Nat. Nanotechnol. 4(5), 297 (2009).Google Scholar
Wang, Y., Yang, Q., and Wang, Z.: The evolution of nanopore sequencing. Front. Genet. 5, 1 (2015).Google Scholar
Cortini, R., Barbi, M., Caré, B.R., and Lavelle, C.: The physics of epigenetics. 88, 025002 (2016).Google Scholar
Tsutsui, M., Matsubara, K., Ohshiro, T., Furuhashi, M., Taniguchi, M., and Kawai, T.: Electrical detection of single methylcytosines in a DNA oligomer. J. Am. Chem. Soc. 133, 9124 (2011).Google Scholar
Biswas, S., Song, W., Borges, C., Lindsay, S., and Zhang, P.: Click addition of a DNA thread to the N-termini of peptides for their translocation through solid-state nanopores. ACS Nano 9(10), 9652 (2015).Google Scholar
Ohshiro, T., Tsutsui, M., Yokota, K., Furuhashi, M., Taniguchi, M., and Kawai, T.: Detection of post-translational modifications in single peptides using electron tunnelling currents. Nat. Nanotechnol. 9(10), 835 (2014).Google Scholar
Zhao, Y., Ashcroft, B., Zhang, P., Liu, H., Sen, S., Song, W., Im, J., Gyarfas, B., Manna, S., Biswas, S., Borges, C., and Lindsay, S.: Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat. Nanotechnol. 9(6), 466 (2014).Google Scholar
Krstic, P., Ashcroft, B., and Lindsay, S.: Physical model for recognition tunneling. Nanotechnology 26(8), 84001 (2015).Google Scholar
Chang, S., Huang, S., Liu, H., Zhang, P., Liang, F., Akahori, R., Li, S., Gyarfas, B., Shumway, J., Ashcroft, B., He, J., and Lindsay, S.: Chemical recognition and binding kinetics in a functionalized tunnel junction. Nanotechnology 23, 235101 (2012).Google Scholar
Korshoj, L.E., Afsari, S., Khan, S., Chatterjee, A., and Nagpal, P.: Single nucleobase identification using biophysical signatures from nanoelectronic quantum tunneling. Small 13, 1603033 (2017).Google Scholar
Singer, E.: The $100 genome. MIT Technology Review (2008). Available at: https://www.technologyreview.com/s/409919/the-100-genome/ (accessed April 15, 2017).Google Scholar
Erlich, Y.: A vision for ubiquitous sequencing. Genome Res. 25(10), 1411 (2015).Google Scholar