Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T11:03:20.383Z Has data issue: false hasContentIssue false

Graphene oxide nanoplatelets of different crystallinity synthesized from helical-ribbon carbon nanofibers and multiwall carbon nanotubes

Published online by Cambridge University Press:  14 September 2011

Helena Varela-Rizo
Affiliation:
Chemical Engineering Department, University of Alicante, Alicante 03690, Spain
Iluminada Rodriguez-Pastor
Affiliation:
Chemical Engineering Department, University of Alicante, Alicante 03690, Spain
Cesar Merino
Affiliation:
Grupo Antolín Ingeniería, E-09007 Burgos, Spain
Mauricio Terrones
Affiliation:
Department of Physics, Department of Materials Science and Engineering & Materials Research Institute, The Pennsylvania State University, University Park, PA 16802-6300; and Research Center for Exotic Nanocarbons (JST), Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan
Ignacio Martin-Gullon*
Affiliation:
Chemical Engineering Department, University of Alicante, Alicante 03690, Spain
*
b)Address all correspondence to this author. e-mail: gullon@ua.es
Get access

Abstract

Graphene oxide nanoplatelets (GONPs) were obtained by unraveling helical-ribbon carbon nanofibers (HR-CNF) using a modified Hummers and Offeman method in conjunction with ultrasonication. In this account, we carry out a complete evaluation of the effect of different oxidative agent concentrations on the resulting platelet materials. Transmission electron microscopy, atomic force microscopy, Fourier transform infrared, x-ray diffraction, x-ray photoelectron spectroscopy, and thermogravimetric analysis were performed to carefully characterize GONPs resulting from the oxidative process. Comparative experiments using multiwall carbon nanotubes (MWCNTs) and graphite were also carried out. Our studies suggest that the oxidation treatment is more effective in HR-CNFs than in MWCNTs. Furthermore, the unraveling of HR-CNFs results in GONPs consisting of less stacked layers when compared to other starting materials such as graphite. Therefore, HR-CNFs appear to be excellent precursors to produce few-layered GONPs.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tapaszto, L., Dobrik, G., Lambin, P., and Biro, L.P.: Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3(7), 397 (2008).CrossRefGoogle ScholarPubMed
2.Yang, X., Dou, X., Rouhanipour, A., Zhi, L., Rader, H.J., and Mullen, K.: Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 130(13), 4216 (2008).CrossRefGoogle ScholarPubMed
3.Campos-Delgado, J., Romo-Herrera, J.M., Jia, X., Cullen, D.A., Muramatsu, H., Kim, Y.A., Hayashi, T., Ren, Z., Smith, D.J., Okuno, Y., Ohba, T., Kanoh, H., Kaneko, K., Endo, M., Terrones, H., Dresselhaus, M.S., and Terrones, M.: Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 8(9), 2773 (2008).CrossRefGoogle ScholarPubMed
4.Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558 (2007).CrossRefGoogle Scholar
5.Horiuchi, S., Gotou, T., Fujiwara, M., Asaka, T., Yokosawa, T., and Matsui, Y.: Single graphene sheet detected in a carbon nanofilm. Appl. Phys. Lett. 84(13), 2403 (2004).CrossRefGoogle Scholar
6.Chen, G., Weng, W., Wu, D., Wu, C., Lu, J., Wang, P., and Chen, X.: Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon 42(4), 753 (2004).CrossRefGoogle Scholar
7.Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., and Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano. 4(8), 4806 (2010).CrossRefGoogle ScholarPubMed
8.Geim, A.K.: Graphene: Status and prospects. Science 324(5934), 1530 (2009).CrossRefGoogle Scholar
9.Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., and Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448(7152), 457 (2007).CrossRefGoogle ScholarPubMed
10.Mack, J.J., Viculis, L.M., Mayer, O.M., Hahn, H.T., Kaner, R.B.: Intercalation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem. 15, 974 (2005).Google Scholar
11.Schniepp, H.C., Li, J-L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud’homme, R.K., Car, R., Saville, D.A., and Aksay, I.A.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535 (2006).CrossRefGoogle ScholarPubMed
12.Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., and Novoselov, K.S.: Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 323(5914), 610 (2009).CrossRefGoogle ScholarPubMed
13.Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., and Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872 (2009).CrossRefGoogle ScholarPubMed
14.Jiao, L., Zhang, L., Wang, X., Diankov, G., and Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877 (2009).CrossRefGoogle ScholarPubMed
15.Cataldo, F., Compagnini, G., Patané, G., Ursini, O., Angelini, G., Ribic, P.R., Margaritondo, G., Cricenti, A., Palleschi, G., and Valentini, F.: Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes. Carbon 48(9), 2596 (2010).CrossRefGoogle Scholar
16.Elías, A.L., Botello-Méndez, A.R., Meneses-Rodríguez, D., Jehová González, V., Ramírez-González, D., Ci, L., Muñoz-Sandoval, E., Ajayan, P.M., Terrones, H., and Terrones, M.: Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett. 10(2), 366 (2009).CrossRefGoogle Scholar
17.Kim, K., Sussman, A., and Zettl, A.: Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes. ACS Nano. 4(3), 1362 (2010).CrossRefGoogle ScholarPubMed
18.Cano-Márquez, A.G., Rodríguez-Macías, F.J., Campos-Delgado, J., Espinosa-Gonzalez, C.G., Tristán-López, F., Ramírez-González, D., Cullen, D.A., Smith, D.J., Terrones, M., and Vega-Cantu, Y.I.: Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9(4), 1527 (2009).CrossRefGoogle ScholarPubMed
19.Terrones, M.: Materials science: Nanotubes unzipped. Nature 458(7240), 845 (2009).CrossRefGoogle Scholar
20.Hummers, W. and Offeman, R.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
21.Varela-Rizo, H., Rodriguez-Pastor, I., Merino, C., and Martin-Gullon, I.: Highly crystalline graphene oxide nano-platelets produced from helical-ribbon carbon nanofibers. Carbon 48(12), 3640 (2010).CrossRefGoogle Scholar
22.Vera-Agullo, J., Varela-Rizo, H., Conesa, J.A., Almansa, C., Merino, C., and Martin-Gullon, I.: Evidence for growth mechanism and helix-spiral cone structure of stacked-cup carbon nanofibers. Carbon 45(14), 2751 (2007).CrossRefGoogle Scholar
24.Martin-Gullon, I., Vera, J., Conesa, J.A., Gonzalez, J.L., and Merino, C.: Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon 44(8), 1572 (2006).CrossRefGoogle Scholar
25.Andrews, R., Jacques, D., Rao, A.M., Derbyshire, F., Qian, D., Fan, X., Dickey, E.C., and Chen, J.: Continuous production of aligned carbon nanotubes: A step closer to commercial realization. Chem. Phys. Lett. 303(5–6), 467 (1999).CrossRefGoogle Scholar
26.Jacques, D.N. and Andrews, R.N.: Process for the continuous production of aligned carbon nanotubes. US Patent, 2007.Google Scholar
27.Chen, G., Weng, W., Wu, D., and Wu, C.: PMMA/graphite nanosheets composite and its conducting properties. Eur. Polym. J. 39(12), 2329 (2003).CrossRefGoogle Scholar
28.Jeong, H-K., Lee, Y.P., Lahaye, R.J.W.E., Park, M-H., An, K.H., Kim, I.J., Yang, C-W., Park, C.Y., Ruoff, R.S., and Lee, Y.H.: Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. 130(4), 1362 (2008).CrossRefGoogle ScholarPubMed
29.Si, Y. and Samulski, E.T.: Synthesis of water soluble graphene. Nano Lett. 8(6), 1679 (2008).CrossRefGoogle ScholarPubMed
30.Cataldo, F.: Structural analogies and differences between graphite oxide and C60 and C70 polymeric oxides (Fullerene Ozopolymers). Fullerenes Nanotubes Carbon Nanostruct. 11(1), 1 (2003).CrossRefGoogle Scholar
31.Stobinski, L., Lesiak, B., Kövér, L., Tóth, J., Biniak, S., Trykowski, G., and Judek, J.: Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J. Alloy compd. 501(1), 77 (2010).CrossRefGoogle Scholar
32.Nemanich, R.J. and Solin, S.A.: First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B 20(2), 392 (1979).CrossRefGoogle Scholar
33.Chieu, T.C., Dresselhaus, M.S., and Endo, M.: Raman studies of benzene-derived graphite fibers. Phys. Rev. B 26(10), 5867 (1982).CrossRefGoogle Scholar
34.Zhao, X., Zhang, Q., Chen, D., and Lu, P.: Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43(5), 2357 (2010).CrossRefGoogle Scholar
35.Waltman, R.J., Pacansky, J., and Bates, C.W.: X-ray photoelectron spectroscopic studies on organic photoconductors: Evaluation of atomic charges on chlorodiane blue and p-(diethylamino)benzaldehyde diphenylhydrazone. Chem. Mater. 5(12), 1799 (1993).CrossRefGoogle Scholar
36.Kalaitzidou, K., Fukushima, H., and Drzal, L.T.: Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites. Composites Part A 38(7), 1675 (2007).CrossRefGoogle Scholar
37.Ros, T.G., van Dillen, A.J., Geus, J.W., and Koningsberger, D.C.: Surface oxidation of carbon nanofibres. Chemistry 8(5), 1151 (2002).3.0.CO;2-#>CrossRefGoogle ScholarPubMed
38.Smith, J., Milton, R., Hedges, S.W., LaCount, R., Kern, D., Shah, N., Huffman, G.P., and Bockrath, B.: Selective oxidation of single-walled carbon nanotubes using carbon dioxide. Carbon 41(6), 1221 (2003).CrossRefGoogle Scholar