Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T00:44:12.216Z Has data issue: false hasContentIssue false

Graphite encapsulated nanocrystals produced using a low carbon : metal ratio

Published online by Cambridge University Press:  31 January 2011

Jonathon J. Host
Affiliation:
Department of Materials Science and Engineering & Materials Research Center, Northwestern University, Evanston, Illinois 60208
Mao H. Teng
Affiliation:
Department of Materials Science and Engineering & Materials Research Center, Northwestern University, Evanston, Illinois 60208
Brian R. Elliott
Affiliation:
Department of Materials Science and Engineering & Materials Research Center, Northwestern University, Evanston, Illinois 60208
Jin-Ha Hwang
Affiliation:
Department of Materials Science and Engineering & Materials Research Center, Northwestern University, Evanston, Illinois 60208
Thomas O. Mason
Affiliation:
Department of Materials Science and Engineering & Materials Research Center, Northwestern University, Evanston, Illinois 60208
D. Lynn Johnson
Affiliation:
Department of Materials Science and Engineering & Materials Research Center, Northwestern University, Evanston, Illinois 60208
Vinayak P. Dravid
Affiliation:
Department of Materials Science and Engineering & Materials Research Center, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

Graphite encapsulated nanocrystals produced by a low carbon tungsten arc were analyzed to determine their chemistry, crystallography, and nanostructural morphology. Metallic nanocrystals of Fe, Co, and Ni are in the face-centered cubic (fcc) phase, and no trace of the bulk equilibrium phases of body-centered cubic (Fe) and hexagonal close-packed (Co) were found. Various analytical techniques have revealed that the encased nanocrystals are pure metal (some carbide was found in the case of Fe), ferromagnetic, and generally spherical. The nanocrystals are protected by turbostratic graphite, regardless of the size of the nanocrystals. The turbostratic graphite coating is usually made up of between 2 and 10 layers. No trace of any unwanted elements (e.g., oxygen) was found. The low carbon: metal ratio arc technique is a relatively clean process for the production of graphite encapsulated nanocrystals.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kratschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature (London) 347, 354 (1990).CrossRefGoogle Scholar
2.Ruoof, R. S., Lorents, D. C., Chan, B., Malhotra, R., and Subramoney, S., Science 259, 346348 (1993).CrossRefGoogle Scholar
3.Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Yamamuro, S., Wakoh, K., Sumiyama, K., Suzuki, K., Kasuya, A., and Nishina, Y., Chem. Phys. Lett. 212, 379 (1993).CrossRefGoogle Scholar
4.Ata, M., Yamaura, K., and Hudson, A. J., Adv. Mater. 7, 287 (1995).CrossRefGoogle Scholar
5.Tomita, M., Saito, Y., and Hayashi, T., Jpn. J. Appl. Phys. 32, L280 (1993).CrossRefGoogle Scholar
6.Seraphin, S., Zhou, D., and Jiao, J., in Science and Technology of Fullerene Materials, edited by Bernier, P., Bethune, D. S., Chiang, L. Y., Ebbesen, T. W., Metzger, R. M., and Mintmire, J. W. (Mater. Res. Soc. Symp. Proc. 359, Pittsburgh, PA, 1995), p. 47.Google Scholar
7.Saito, Y., Okuda, M., Yoshikawa, T., Bandow, S., Yamamuro, S., Wakoh, K., Sumityama, K., and Suzuki, K., Jpn. J. Appl. Phys. 33, L186189 (1994).CrossRefGoogle Scholar
8.Bandow, S. and Saito, Y., Jpn. J. Appl. Phys. 32, L1677 (1993).Google Scholar
9.Saito, Y., Okuda, M., Yoshikawa, T., Kasuya, A., and Nishina, Y., J. Phys. Chem. 98, 6696 (1994).CrossRefGoogle Scholar
10.Yoshida, Y., Appl. Phys. Lett. 62, 3447 (1993).CrossRefGoogle Scholar
11.Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, M., Sumiyama, K., Suzuki, K., Kasuya, A., and Nishina, Y., J. Phys. Chem. Solids 54, 1849 (1993).CrossRefGoogle Scholar
12.McHenry, M. E., Majetich, S. A., Artman, J. O., DeGraef, M., and Staley, S. W., Phys. Rev. B 49, 11 358 (1994).CrossRefGoogle Scholar
13.Teng, M. H., Host, J. J., Hwang, J-H., Elliott, B. R., Weertman, J. R., Mason, T. O., Dravid, V. P., and Johnson, D. L., unpublished.Google Scholar
14.Brunsman, E. M., Sutton, R., Bortz, E., Kirkpatrick, S., Midelfort, K., Williams, J., Smith, P., McHenry, M. E., Majetich, S. A., Artman, J. O., DeGraef, M., and Staley, S. W., J. Appl. Phys. 75, 5882 (1994).CrossRefGoogle Scholar
15.Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Yamamuro, S., Wakoh, K., Sumiyama, K., Suzuki, K., and Kasuya, A., J. Appl. Phys. 75, 134 (1994).CrossRefGoogle Scholar
16.Seraphin, S., Wang, S., Zhou, D., and Jiao, J., Chem. Phys. Lett. 228, 506 (1995).CrossRefGoogle Scholar
17.Lin, X., Wang, X. K., Dravid, V. P., Chang, R. P. H., and Ketterson, J. B., Appl. Phys. Lett. 64, 181 (1994).CrossRefGoogle Scholar
18.Majetich, S. A., Scott, J. H., Brunsman, E. M., Kirkpatrick, S., McHenry, M. E., and Winkler, D. C., ECS Proceedings–Fullerenes: Physics, Chemistry, and New Directions VII (1995).Google Scholar
19.Mchenry, M. E., Brunsman, E. M., and Majetich, S. A., unpublished.Google Scholar
20.Ijima, S. and Ichihashi, T., Nature (London) 363, 603 (1993).CrossRefGoogle Scholar
21.Saito, Y., Okuda, M., Fujimoto, N., Yoshikawa, T., Tomita, M., and Hayashi, T., Jpn. J. Appl. Phys. 33, L526 (1994).CrossRefGoogle Scholar
22.Bethune, D. S., Klang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R., Nature (London) 363, 605 (1993).CrossRefGoogle Scholar
23.Zhou, D., Seraphin, S., and Wang, S., Appl. Phys. Lett. 65, 1593 (1994).CrossRefGoogle Scholar
24.Subramoney, S., Ruoff, R., Lorents, D. C., and Malhotra, R., Nature (London) 366, 637 (1993).CrossRefGoogle Scholar
25.Majetich, S. A., Artman, J. O., McHenry, M. E., Nuhfer, N. T., and Staley, S. W., Phys. Rev. B 48, 16845 (1993).CrossRefGoogle Scholar
26.Dravid, V. P., Host, J. J., Teng, M. H., Elliott, B. R., Hwang, J-H., Johnson, D. L., Mason, T. O., and Weertman, J. R., Nature (London) 374, 602 (1995).CrossRefGoogle Scholar
27.Subramoney, S., Ruoff, R. S., Lorents, D. C., Chan, B., Malhotra, R., Dyer, M. J., and Parvin, K., Carbon 32, 507 (1994).CrossRefGoogle Scholar
28.Teng, M. H., Host, J. J., Hwang, J-H., Elliott, B. R., Weertman, J. R., Mason, T. O., Dravid, V. P., and Johnson, D. L., J. Mater. Res. 10, 1 (1995).CrossRefGoogle Scholar
29.Oberlin, A. and Endo, M., J. Crys. Growth 32, 335 (1976).CrossRefGoogle Scholar
30.Lupis, C. H. P., Chemical Thermodynamics of Materials (North-Holland, New York, 1983), p. 367.Google Scholar
31.Olson, G. B. and Owen, W. S., Martensite (ASM INTERNATIONAL, Materials Park, OH, 1992).Google Scholar
32.Hihara, T., Onodera, H., Sumiyama, K., Suzuki, K., Kasuya, A., Nishina, Y., Saito, Y., Yoshikawa, T., and Okuda, M., Jpn. J. Appl. Phys. 33, L24 (1994).CrossRefGoogle Scholar
33.Majetich, S. A., Scott, J. H., and McHenry, M. E., in Science and Technology of Fullerene Materials, edited by Bernier, P., Bethune, D. S., Chiang, L. Y., Ebbesen, T. W., Metzger, R. M., and Mintmire, J. W. (Mater. Res. Soc. Symp. Proc. 359, Pittsburgh, PA, 1995), p. 29.Google Scholar
34.Saito, Y., Yoshikawa, T., Okuda, M., Ohkohchi, M., Ando, Y., Kasuya, A. and Nishina, Y., Chem. Phys. Lett. 209, 72 (1993).CrossRefGoogle Scholar
35.Elliott, B. R., Host, J. J., Dravid, V. P., Teng, M. H., and Johnson, D. L., unpublished.Google Scholar