Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T16:25:17.367Z Has data issue: false hasContentIssue false

Graphite–graphene hybrid filler system for high thermal conductivity of epoxy composites

Published online by Cambridge University Press:  16 April 2015

Nayandeep K. Mahanta
Affiliation:
Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
Marcio R. Loos
Affiliation:
Federal University of Santa Catarina, Blumenau 89065-300Brazil
Ica Manas Zlocozower
Affiliation:
Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
Alexis R. Abramson*
Affiliation:
Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
*
a)Address all correspondence to this author. e-mail: alexis.abramson@case.edu
Get access

Abstract

The thermal conductivities of epoxy composites of mixtures of graphite and graphene in varying ratios were measured. Thermal characterization results showed unexpectedly high conductivities at a certain ratio filler ratio. This phenomenon was exhibited by samples with three different overall filler concentrations (graphene + graphite) of 7, 14, and 35 wt%. The highest thermal conductivity of 42.4 ± 4.8 W/m K (nearly 250 times the thermal conductivity of pristine epoxy) was seen for a sample with 30 wt% graphite and 5 wt% graphene when characterized using the dual-mode heat flow meter technique. This significant improvement in thermal conductivity can be attributed to the lowering of overall thermal interface resistance due to small amounts of nanofillers (graphene) improving the thermal contact between the primary microfillers (graphite). The synergistic effect of this hybrid filler system is lost at higher loadings of the graphene relative to graphite. Graphite and graphene mixed in the ratio of 6:1 yielded the highest thermal conductivities at three different filler loadings.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Heremans, J. and Beetz, C.P. Jr.: Thermal conductivity and thermopower of vapor-grown graphite fibers. Phys. Rev. B 32, 1981 (1985).CrossRefGoogle ScholarPubMed
Slack, G.A.: Anisotropic thermal conductivity of pyrolytic graphite. Phys. Rev. 127, 694 (1962).CrossRefGoogle Scholar
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrahn, D., Miao, F., and Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008).CrossRefGoogle ScholarPubMed
Shenogin, S., Xue, L., Ozisik, R., Keblinski, P., and Cahill, D.G.: Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J Appl. Phys. 95, 8136 (2004).CrossRefGoogle Scholar
Gonnet, P., Liang, Z., Choi, E.S., Kadambala, R.S., Zhang, C., Brooks, J.S., Wang, B., and Kramer, L.: Thermal conductivity of magnetically aligned carbon nanotube buckypapers and composites. Curr. Appl. Phys. 6, 119 (2006).CrossRefGoogle Scholar
Iijima, S.: Helical microtubes of graphitic carbon. Nature. 354, 56 (1991).CrossRefGoogle Scholar
Ajayan, P.M., Stephan, O., Colliex, C., and Trauth, D.: Aligned carbon nanotube arrays formed by cutting a polymer resin—Nanotube composite. Science 265, 1212 (1994).CrossRefGoogle Scholar
Choi, E.S., Brooks, J.S., Eaton, D.L., Al-Haik, M.S., Hussaini, M.Y., Garmestani, H., Li, D., and Dahmen, K.: Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl. Phys. 94, 6034 (2003).CrossRefGoogle Scholar
Moisala, A., Li, Q., Kinloch, I.A., and Windle, A.H.: Thermal and electrical conductivity of single and multi-walled carbon nanotube-epoxy composites. Compos. Sci. Technol. 65, 1285 (2006).CrossRefGoogle Scholar
Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Kinloch, I.A., Bauhafer, W., Windle, A.H., and Scuttle, K.: Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47, 2036 (2006).CrossRefGoogle Scholar
Yu, A., Itkis, M.E., Bekyarova, E., and Haddon, R.C.: Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites. Appl. Phys. Lett. 89, 133102 (2006).CrossRefGoogle Scholar
Guo, J., Zhao, B., Itkis, M.E., Bekyarova, E., Hu, H., Karnak, V., Yu, A., and Haddon, R.C.: Chemical engineering of the single-walled carbon nanotube-nylon 6 interface. J. Am. Chem. Soc. 128, 7492 (2006).CrossRefGoogle Scholar
Shenogin, S., Bodapati, A., Xue, L., OIzisik, R., and Keblinski, P.: Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl. Phys. Lett. 85, 2229 (2004).CrossRefGoogle Scholar
Guthy, C., Du, F., Brand, S., Winey, K.I., and Fischer, J.E.: Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites. J. Heat Transfer 129, 1096 (2007).CrossRefGoogle Scholar
Yang, K., Gu, M., Guo, Y., Pan, X., and Mu, G.: Effects of carbon nanotube functionalization on the the mechanical and thermal properties of epoxy composites. Carbon 47, 1723 (2009).CrossRefGoogle Scholar
Du, F., Guthy, C., Kashiwagi, T., Fischer, J.E., and Winey, K.I.: An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity. J. Polym. Sci., Part B: Polym. Phys. 44, 1513 (2006).CrossRefGoogle Scholar
Gong, Q.M., Li, Z., Bai, X.D., Li, D., Zhao, Y., and Liang, J.: Thermal properties of aligned carbon nanotube/carbon nanocomposites. Mater. Sci. Eng., A 384, 209 (2004).CrossRefGoogle Scholar
Huang, H., Liu, C.H., Wu, Y., and Fan, S.S.: Aligned carbon nanotube composite films for thermal management. Adv. Mater. 17, 1652 (2005).CrossRefGoogle Scholar
Park, J.G., Cheng, Q., Lu, J., Bao, J., Li, S., Tian, Y., Liang, Z., Zhang, C., and Wang, B.: Thermal conductivity of MWCNT/epoxy composites: The effects of length, alignment and functionalization. Carbon 50, 2083 (2012).CrossRefGoogle Scholar
Veca, L.M., Meziani, M.J., Wang, W., Wang, X., Lu, F., Zhang, P., Lin, Y., Fee, R., Connell, J.W., and Sun, Y.P.: Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv. Mater. 21, 2088 (2009).CrossRefGoogle Scholar
Moniruzzaman, M. and Winey, K.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194 (2006).CrossRefGoogle Scholar
Kumar, S., Alam, M.A., and Murthy, J.Y.: Effect of percolation on thermal transport in nanotube composites. Appl. Phys. Lett. 90, 104105 (2007).CrossRefGoogle Scholar
Keblinski, P. and Cleri, F.: Contact resistance in percolating networks. Phys. Rev. B 69, 184201 (2004).CrossRefGoogle Scholar
Foygel, M., Morris, R.D., Anez, D., French, S., and Sobolev, V.L.: Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Phys. Rev. B 71, 104201 (2005).CrossRefGoogle Scholar
Hu, T., Grosberg, A.Y., and Shklovskii, B.I.: Conductivity of a suspension of nanowires in a weakly conducting medium. Phys. Rev. B 73, 155434 (2006).CrossRefGoogle Scholar
Tian, W. and Yang, R.: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Appl. Phys. Lett. 90, 263105 (2007).CrossRefGoogle Scholar
Konatham, D. and Stroilo, A.: Thermal boundary resistance at the graphene-oil interface. Appl. Phys. Lett. 95, 163105 (2009).CrossRefGoogle Scholar
Huxtable, S.T., Cahill, D.G., Shenogin, S., Xue, L., Ozisik, R., Barone, P., Usrey, M., Strano, M.S., Siddons, G., Shim, M., and Keblinski, P.: Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2, 731 (2003).CrossRefGoogle ScholarPubMed
Sun, X., Ramesh, P., Itkis, M.E., Bekyarova, E., and Haddon, R.C.: Dependence of the thermal conductivity of two-dimensional graphite nanoplatelet-based composites on the nanoparticle size distribution. J. Phys.: Condens. Mater. 22, 334216 (2010).Google ScholarPubMed
Teng, C.C., Ma, C.C.M., Lu, C.H., Yang, S.Y., Lee, S.H., Hsiao, M.C., Yen, M.Y., Chiou, K.C., and Lee, T.M.: Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49, 5107 (2011).CrossRefGoogle Scholar
Yu, A., Ramesh, P., Sun, X., Bekyarova, E., Itkis, M.E., and Haddon, R.C.: Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. Adv. Mater. 20, 4740 (2008).CrossRefGoogle Scholar
Shahil, K.M.F. and Balandin, A.A.: Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12, 861 (2012).CrossRefGoogle ScholarPubMed
Bui, K., Duong, H.M., Striolo, A., and Papavassiliou, D.V.: Effective heat transfer properties of graphene sheet nanocomposites and comparison to carbon nanotube nanocomposites. J. Phys. Chem. C 115, 3872 (2011).CrossRefGoogle Scholar
Mahanta, N.K. and Abramson, A.R.: Development of the thermal flash method for characterization of carbon nanofibers. In Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference, Honolulu, Hawaii, USA, March 2011.CrossRefGoogle Scholar
Mahanta, N.K. and Abramson, A.R.: The thermal flash technique: The inconsequential effect of contact resistance and the characterization of carbon nanotube clusters. Rev. Sci. Instrum. 83, 054904 (2012).CrossRefGoogle ScholarPubMed
Mahanta, N.K. and Abramson, A.R.: Thermal conductivity of graphene and graphene oxide nanoplatelets. In Proceedings of the 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, California, USA, May 2012.CrossRefGoogle Scholar
Mahanta, N.K., Abramson, A.R., and Howe, J.Y.: Thermal conductivity measurements on individual vapor-grown carbon nanofibers and graphene nanoplatelets. J Appl. Phys. 114, 163528 (2013).CrossRefGoogle Scholar
Mahanta, N.K. and Abramson, A.R.: The dual-mode heat flow meter technique: A versatile method for characterizing thermal conductivity. Int. J. Heat Mass Transfer 53, 5581 (2010).CrossRefGoogle Scholar
Mahanta, N.K., Abramson, A.R., Lake, M.L., Burton, D.J., Chang, J.C., Mayer, H.K., and Ravine, J.L.: Thermal conductivity of carbon nanofiber mats. Carbon 48, 4457 (2010).CrossRefGoogle Scholar
Deng, F., Zheng, Q.S., Wang, L.F., and Nan, C.W.: Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 90, 021914 (2007).CrossRefGoogle Scholar
Deng, F. and Zheng, Q.S.: Interaction models for effective thermal and electrical conductivities of carbon nanotube composites. Acta Mech. Solida Sin. 22, 1 (2009).CrossRefGoogle Scholar
Moore, A.L., Cummins, A.T., Jensen, J.M., and Shi, L., Koo, J.H.: Thermal conductivity measurements of nylon 11-carbon nanofiber nanocomposites. J. Heat Transfer 131, 091602 (2009).CrossRefGoogle Scholar